• Title/Summary/Keyword: dry separation

Search Result 152, Processing Time 0.029 seconds

Dry Separation of PVC Film from Plastic Film Mixture by Using Air Table

  • Song, Young-Jun;Hiroki Yotsumoto;Lee, Gye-Seung
    • Resources Recycling
    • /
    • v.11 no.1
    • /
    • pp.37-42
    • /
    • 2002
  • This study was conducted in order to remove Poly vinyl chloride(PVC) from the waste plastic film mixture. The fittings of Air Table was modified to increase the separation efficiency of PVC and PE(poly ethylene). PE and PVC was successfully separated from PVC-PE film mixture with the yield of PE 90% or more and with his grade of 99% or more, using the improved Air Table. The details of the separation condition and results will be discussed in this paper. Dry separation, Waste plastic film, PVC, Air Table. The details of the separation condition and results will be discussed in this paper.

Superconducting high gradient magnetic separation for magnetic substance at sludge powder of hot rolled coolant

  • Kwon, Jun-Mo;Ha, Dong-Woo;Kim, Tae-Hyung;Cho, Mun-Dak;Choi, Woo-Hyuk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.353-353
    • /
    • 2009
  • It is an important task to construct a recycling society with a low damage on the environment in our century. Magnetic separation is expected to be applied for the industrial waste treatment as an important supporting technology. In the magnetic separation of dry condition, the cohesive force between particles is strong compared with that in the wet condition's magnetic separation. The use of high magnetic field by the superconducting magnet enhances the powder's magnetic substance capture ability of the magnetic separation. In this study, the POSCO's coolant sludge of hot rolled steel was used for the superconducting magnetic separation of dry condition. Cryo-cooled NB-Ti superconducting magnet with 100 mm room temperature bore and 600 mm of height was used for magnetic separator.

  • PDF

Comparison of Pollutant Control in Combined Sewer Overflows and Separated Sewer Overflows using the Separation Wall (우오수분리벽을 이용한 합류식 하수관거와 분류식 우수관거의 월류수 제어효과 비교)

  • Lim, Bong-Su;Kim, Do-Young;Lee, Kuang-Chun
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.4
    • /
    • pp.458-466
    • /
    • 2007
  • This study is to evaluate control effects of separation wall by surveying water quality and sewer overflows during dry and wet periods in combined sewer and separated sewer systems. Ravine water from the combined Seokgyo outfall with the separation wall was separated about four times larger than sewage flow during dry periods. The water quality of the combined Seokgyo outfall with separation wall during dry periods is flow weighed average BOD 61 mg/L, the combined Cheonseokgyo outfall without the separation wall is average BOD 71 mg/L, and the separated Pyeongsong center outfall is average BOD 41 mg/L. The BOD concentration in separated outfall form about 57% of the combined outfall, and this means the separated outfall (i.e. storm sewer) is polluted by inflow of sewage. The overflow load of the separated outfall is ten times higher than the combined outfall and its overflow load per rainfall is three times than combined outfall during the wet periods. Therefore, the control plan of overflow load is required in storm sewer. The control effects of the overflow load increased 79% by setting the separation wall in the combined sewer, and showed 27% increase without the separation wall in separated sewer, but forecasted over 80% increase of effects if the separation wall was set.

Experimental Study on Development of Oscillating Sieve Separation Method for Improving Threshing Performance (탈곡성능(脱糓性能) 향상(向上)을 위(爲)한 요동(搖動)체 선별방법(選別方法) 개발(開發)에 관(關한) 연구(硏究))

  • Kim, Sang Hun;Chung, Chang Joo;Yoo, Soo Nam
    • Journal of Biosystems Engineering
    • /
    • v.6 no.2
    • /
    • pp.33-47
    • /
    • 1982
  • To modernize the conventional rice post production technology and reduce grain losses, a transition toward the wet-paddy threshing system has been strongly demanded. The head-feeding type thresher with pneumatic separation has been used dominantly for threshing dried-paddy, but some adverse effects in separation performance for threshing wet-paddy is encounterred. In order to solve the problems, the development of thresher with an additional oscillating sieve to the conventional pneumatic separation has been recommanded. This study was intended to evaluate the separating performance of thresher with oscillating sieve which was attached additionally to the conventional auto-thresher equipped with separation system of blower and suction fan. For different feed rates and rice varieties, wet-and dry-material were tested with threshers attached with and without oscillating sieve. Results of the study are summarized as follows: 1. When the feed rates were 480 and 640 kg/hr, there was no statistically significant difference in power reqirements between the threshers with and without an additional sieve device for both dry-and wet-threshing. However, when the feed rate was 960 kg/hr, power requirements of thresher without sieve were greater for wet-paddy threshing than the thresher with the additional sieve separator by about 20% points. 2. With additional oscillating sieve device, the ratios of total weights of whole grains including grains with branch let and damaged grains to the total output did not show statistical difference among the feed rates. However, with pneumatic separation the ratio was decreased as the level of feed rate increased. 3. The total amount of grains with branchlet (including broken panicle) increased with the moisture content. For both the wet-and dry-material threshing with the additional oscillating sieve, the percent of grains with branchlet to the total output decreased greatly as the feed rate increased. 4. The output of the damaged grains increased as moisture content decreased. Especially, for the dry-paddy threshing, the additional sieve separating device produced more damaged grains than the pneumatic separation at all feed rates. 5. Generally, for dry paddy threshing, the separating performance of the thresher with the additional sieve device was better at all feed rates, showing greater difference with increasing feed rates. 6. Separating losses were greater with the pneumatic than sieve separation for both the wet-and dry-threshing. 7. The overall comparison of separating performance of threshers tested with and without an additional sieve device showed that the former was more effective than the latter for the dry-material threshing. However, for the wet-paddy threshing, the separation performance with a sieve device was better than the pneumatic only when the feed rate was high.

  • PDF

Pollutant Control using the Separation Wall between Stormwater and Sewage in a Combined Sewer System (우오수분리벽을 이용한 합류식 하수관거의 오염물질 제어효과)

  • Lee, Kuang Chun;Choi, Bong Choel;Lim, Bong Su
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.4
    • /
    • pp.461-469
    • /
    • 2004
  • This research is to determine the stormwater effects on sewer concentrations by measuring and comparing the flow and pollutant concentrations during dry and rainy periods in the existing BOX type combined sewer pipes. The monitoring was carried out in two sites, which are the Daesachen outfall having PE separation wall in BOX type combined sewer pipes and the Yongunchen outfall not having seperatioin wall. The average flow-weighted BOD concentraion in Yongunchen outfall is 2-fold lower than in Daesachen outfall because of the dilution effect from ravine water. However, the pollutant mass loading is 16 fold higher in Yongunchen outfall than in Daesachen outfall because of more flows. According to the research, the separation wall controls 52% pollutant mass during a storm period (11.5 mm/hr rainfall intensity). Therefore, the Yongunchen combined sewer system (CSS) need separation wall to control and to prevent more pollutant input in stream. In Daesachen area, the maximum sewer flow rate during a storm period measured about 10 fold bigger than average sewer flow during dry periods. Also the concentrations between rainy and dry periods increase approximately 33 fold for BOD and 120 fold for SS. In Yongunchen area, it increases about 9 fold for the maximum flow rate, 18 fold for BOD and 22 fold for SS during a storm. Therefore, the research is concluded that the separation wall between stromwater (or ravine water) and sewage can decrease the dilution effect in CSS and control the pollutant loading.

Study on Refinement of Hwasun Flint Clay (화순산 경질점토의 정제에 관한 연구)

  • 박금철;장영재
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.6
    • /
    • pp.769-776
    • /
    • 1990
  • This study deals with the refinement of Hwasun flint clay by grinding, classifying, magnetic separation and acid treatment in sequence. Results are as follows ; 1. Fine kaolinite particles of median size in the range of 4.8 and 1.7$\mu\textrm{m}$ was collected, with the yield of 87.4% by dry grinding and classifying process. 2. It is proven that the iron bearing are of Hwasun flint clay is mainly consisted of chloritoid and iron rich muscovite. 3. As the results of the high gradient magnetic separation, the bleaching and iron removal degree of the dry grinding and classifying sample was 4-58% and 5-62% respectively. 4. As the results of the acid treatment, bleaching and weight loss degree of the dry grinding and classifying sample was reduced to 16-82% and 6-29% respectively.

  • PDF

The Recovery of Non-ferrous Metals from Broken Light Bulbs using the Magnetic Liquid Based Separation

  • Chioran, Viorica;Ardelean, Ioan
    • Journal of Magnetics
    • /
    • v.15 no.2
    • /
    • pp.91-98
    • /
    • 2010
  • The paper presents results of a study on the selective separation technology of ferrous and non-ferrous metals from broken light bulbs. The proposed method is to use magnetic fluids to obtain a magnetic fluid based- separation. [1] The study was conducted using three types of waste materials: regular light bulbs, auto light bulbs and neon tubes. In order to process the waste materials, a six stages technologic flow was developed: a) separation of light bulbs components; b) Physical and chemical analysis of raw materials; c) grain conditioning of the raw material; d) dry magnetic separation of ferrous components; e) magnetic fluid separation of non-magnetic material; f) recovery of the magnetic fluid adhered to the surface of the separated material grains. [2] This study shows that magnetic fluid separation is only profitable for regular and auto light bulbs and is not profitable in the case of neon tubes.

Dry separation of PVC film from waste plastic film mixture using Air Table

  • Song, Young-Jun;Hiroki Yotsumoto;Eisetsu Oi
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.734-737
    • /
    • 2001
  • A study was conducted in order to remove PVC from the waste plastic film mixture. The fittings of Air Table was modified to increase the separation efficiency of PVC. By using the improved air table, the PE and PVC was successfully separated from PVC-PE film mixture with the yield of PE 90% or more and with the content of PVC in PE 1% or less. The detail of the separation condition and result will be discussed in this paper.

  • PDF

COAL DESULFURIZATION BY MAGNETIC SEPARATION METHODS (자력선별법에 의한 선탄의 탈황)

  • Jeon, Ho-Seok;Lee, Jae-Jang
    • Journal of Industrial Technology
    • /
    • v.15
    • /
    • pp.175-185
    • /
    • 1995
  • Under the new environmental regulations announced by the government, utilities will have to cut their sulfur dioxide emissions by 60% from 1991 levels by the year of 1999. Sulfur dioxide emissions can be reduced prior to combustion by physical, chemical or biological coal cleaning. The new technology of high gradient magnetic separation (HGMS) offers the potential of economic separatoins of a variety of fine, weakly magnetic minerals including inorganic sulfur and many ash-forming minerals from coals. In the present paper, magnetic separation tests have been conducted on Korean anthracite and high-sulfur Chinese coal to investigate the feasibility of these techniques for reducing sulfur content from coals. In wet magnetic separation, the studied operating parameters include particle size, pH, matrix types, feed solids content, feed rate, number of cleaning stages and etc. The results shows that for wet separation, 60~70% of total sulfur was removed from coals with over 80% combustible recovery, on the other hand, for dry separation, 47.6% of total sulfur was removed from coals with 75% recovery.

  • PDF

Effects of Particle Size of Dry Water on Fire Extinguishing Performance (드라이워터의 입자크기가 소화성능에 미치는 영향)

  • Lee, Eungwoo;Choi, Youngbo
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.3
    • /
    • pp.28-35
    • /
    • 2019
  • Dry water is a core-shell structured powder which comprises a very fine water core covered with hydrophobic silica particles. Recently, the dry water has attracted attention as a new type of fire extinguishing agents. However, characteristics of the dry water as a fire extinguishing agent have not been revealed until now. To our best knowledge, this is the first work to uncover effects of particle size of the dry water on the fire extinguishing performance. Pristine dry water, which has heterogeneous particle size distribution, was carefully separated by sieving method into three fractions which were a small size (ca. $110{\mu}m$) fraction, a medium size (ca. $220{\mu}m$) fraction and a large size (ca. $400{\mu}m$) fraction. Microscopic observations confirmed the effective separation of dry water's particle size. In extinguishing tests of wood cribs fire, the medium size dry water showed most excellent fire extinguishing performance, as compared to other dry waters having small (ca. $110{\mu}m$) and large (ca. $400{\mu}m$) particle size. The good performance of the medium size (ca. $220{\mu}m$) dry water may be attributed to the balance between cooling effect of the water core and smothering effect of the silica particles. It is also revealed that small size dry water has poor flowability than large size dry water.