• Title/Summary/Keyword: dry sand

Search Result 431, Processing Time 0.024 seconds

Spatial Characteristics of Vegetation Development and Groundwater Level in Sand Dunes on a Natural Beach (해안사구의 지하수위와 식생 발달의 공간적 특성 연구)

  • Park, JungHyun;Yoon, Han-sam;Jeon, Yong-Ho
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.3
    • /
    • pp.218-226
    • /
    • 2016
  • Field observations were used to study the characteristics and influence of groundwater level fluctuations on vegetation development on the natural beach of a sandy barrier island, in the Nakdong River estuary. The spatial/temporal fluctuations of the groundwater level and the interactions with the external forces (weather, ocean wave and tide) were analyzed. The results indicated that when it rains the groundwater level rises. During summer, when precipitation intensity is greater than 20 mm/hour, it rose rapidly over 20 cm. Subsequently, it fell gradually during periods of no precipitation. Seasonal characteristics indicated that the groundwater level was high during the summer rainy season and tended to fall in the winter dry season. The time-averaged groundwater level, observed from the four observations over 3 years (2012-2014), was about 1.47 m, higher than mean sea level (M.S.L.). It was shown that the average annual groundwater level rises toward the land rather than showing intertidal patterns observation. Differences in the presence or absence of a coastal sand dunes affected the progress of vegetation. In other words, in environments of saltwater intrusion where the groundwater level varies, dependent on the distance from the shoreline and bottom slope, sand dunes can be provided to affect soil conditions and groundwater, so that vegetation can be grown reliably.

Prediction of the Natural Frequency of Pile Foundation System in Sand during Earthquake (사질토 지반에 놓인 지진하중을 받는 말뚝 기초 시스템의 고유 진동수 예측)

  • Yang, Eui-Kyu;Kwon, Sun-Yong;Choi, Jung-In;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.1
    • /
    • pp.45-54
    • /
    • 2010
  • It is important to calculate the natural frequency of a piled structure in the design stage in order to prevent resonance-induced damage to the pile foundation and analyze the dynamic behavior of the piled structure during an earthquake. In this paper, a simple but relatively accurate method employing a mass-spring model is presented for the evaluation of the natural frequency of a pile-soil system. Greatly influencing the calculation of the natural frequency of a piled structure, the spring stiffness between a pile and soil was evaluated by using the coefficient of subgrade reaction, the p-y curve, and the subsoil elastic modulus. The resulting natural frequencies were compared with those of 1-g shaking table tests. The comparison showed that the natural frequency of the pile-soil system could be most accurately calculated by constructing a stiffness matrix with the spring stiffness of the Reese (1974) method, which utilizes the coefficient of the subgrade reaction modulus, and Yang's (2009) dynamic p-y backbone curve method. The calculated natural frequencies were within 5% error compared with those of the shaking table tests for the pile system in dry dense sand deposits and 5% to 40% error for the pile system in saturated sand deposits depending on the occurrence of excess pore water pressure in the soil.

Evaluation of Seismic Loading of Pile Foundation Structure Considering Soil-foundation-structure Interaction (지반-기초-구조물 상호작용을 고려한 말뚝 기초 구조물에서의 지진 하중 평가)

  • Yoo, Min Taek;Ha, Jeong Gon;Jo, Seong-Bae;Kim, Dong Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.125-132
    • /
    • 2014
  • In this study, a series of dynamic centrifuge tests were performed for a soil-foundation-structural interaction system in dry sand with various embedded depths and superstructure conditions. Sinusoidal wave, sweep wave and real earthquake were used as input motion with various input acceleration and frequencies. Based on the results, a natural period and an earthquake load for soil-structure interaction system were evaluated by comparing the free-field and foundation accelerations. The natural period of free field is longer than that of the soil-foundation-structure system. In addition, it is confirmed that the earthquake load for soil-foundation-structure system is smaller than that of free-field in short period region. In contrast, the earthquake load for soil-foundation-structure interaction system is larger than that of free-field in long period region. Therefore, the current seismic design method, applying seismic loading of free-field to foundation, could overly underestimate seismic load and cause unsafe design for long period structures, such as high-rise buildings.

Active Earth Pressure Acting on the Cylindrical Retaining Wall of a Shaft (원형수직구의 흙막이 벽체에 작용하는 주동토압)

  • Chun, Byungsik;Shin, Youngwan
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.4
    • /
    • pp.15-24
    • /
    • 2006
  • It is well known that earth pressure on the cylindrical open caisson and cylindrical retaining wall of a shaft is less than that at-rest and in plane strain condition because of the horizontal and vertical arching effects due to wall displacement and stress relief. In order to examine the earth pressure distribution of a cylindrical wall, model tests were performed in dry sand for the care of constant wall displacement with depth. Model test apparatus which can control wall displacement, wall friction, and wall shape ratio was developed. The effects of various factors that influence earth pressure acting on the cylindrical retaining wall of a shaft were investigated.

  • PDF

Dynamic Centrifuge Modeling for Evaluating Seismic Loads of Soil-Foundation-Structures (동적 원심모형시험을 통한 지반 및 상부 구조물의 지진 하중 특성)

  • Lee, Sei-Hyun;Kim, Dong-Soo;Choo, Yun-Wook;Park, Hong-Gun;Kim, Dong-Kwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.192-200
    • /
    • 2010
  • Korea is part of a region of low or moderate seismic zone in which few earthquakes have been monitored, so it is difficult to approve design ground motions and seismic responses on structures from response spectrum. In this study, a series of dynamic centrifuge model tests for demonstrating seismic amplification characteristics in soil-foundation-structure system were performed using electro-hydraulic shaking table mounted on the KOCED 5.0 m radius beam centrifuge at KAIST in Korea. The soil model were prepared by raining dry sand and $V_S$ profiles were determined by performing bender element tests before shaking. The foundation types used in this study are shallow embedded foundation and deep basement fixed on the bottom. Total 7 building structures were used and the response of building structures were compared with response spectrum from the acceleration records on surface.

  • PDF

Bearing capacity of shallow footing under combined loading

  • Kusakabe, Osamu;Takeyama, Tomohide
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.3-25
    • /
    • 2010
  • The paper deals with two bearing capacity problems of shallow footing under combined loading. The first is a FEM study of shallow strip footing on two-layer clay deposits subjected to a vertical, horizontal and moment combined loading, while the second is a centrifuge study of shallow rectangular footing on dry sand under double eccentricity. The FEM results revealed that the existence of top soft layer sensitively affects more on horizontal and moment capacity than vertical capacity for cases of footing on soft clay overlying stiff clay. Practical design charts are presented to evaluate bearing capacities of footing for various combinations of the ratio of the depth of the upper layer to the footing width and the ratio of undrained strength of the upper layer to that of the lower. The centrifuge tests indicated that current design practice of calculating failure load of rectangular surface footing under double eccentricity underestimates the centrifuge loading test data. This trend is more marked when the eccentricity becomes larger. The decreasing trend in failure load with an increase of double eccentricity is rather uniquely expressed by a single curve, using a newly defined resultant eccentricity and the diagonal length of the footing base.

  • PDF

Monitoring of Moisture Content and Sediment Fineness as Predictors of Shoal Breaching in an Estuary

  • Lee, Seulki;Park, Sungjae;Lee, Chang-Wook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.1
    • /
    • pp.25-32
    • /
    • 2018
  • Namdae-cheon in Gangwon-do Province, Korea, is a valuable well-preserved lagoon. The estuary of Namdae-cheon Stream is closed because of the surrounding natural sand shoal. Thus, during the dry season, river water cannot easily flow to the ocean and therefore stagnates. River water congestion causes environmental deterioration of estuaries, often by eutrophication. In this study, we examined wall disintegration in the estuary area and used it to determine appropriate measures for the conservation of estuary water quality in the future. A total of 24 sites were selected, with 13 sites on the west side and 11 sites on the east side of the estuary study area. Samples were collected and analyzed for particle size and moisture content both vertically and horizontally. Sedimentary deposition rate was measured, and subsidence analysis was performed. Particle size, water content, sedimentary deposition, and subsidence analyses indicated that flow shifted to the west during the study period. In conjunction with other variables that may affect changes in flow, these parameters can be used in future research to predict shoal breaches and associated changes in water flow direction.

Behavior of underground strutted retaining structure under seismic condition

  • Chowdhury, Subha Sankar;Deb, Kousik;Sengupta, Aniruddha
    • Earthquakes and Structures
    • /
    • v.8 no.5
    • /
    • pp.1147-1170
    • /
    • 2015
  • In this paper, the behavior of underground strutted retaining structure under seismic condition in non-liquefiable dry cohesionless soil is analyzed numerically. The numerical model is validated against the published results obtained from a study on embedded cantilever retaining wall under seismic condition. The validated model is used to investigate the difference between the static and seismic response of the structure in terms of four design parameters, e.g., support member or strut force, wall moment, lateral wall deflection and ground surface displacement. It is found that among the different design parameters, the one which is mostly affected by the earthquake force is wall deflection and the least affected is the strut force. To get the best possible results under seismic condition, the embedment depth of the wall and thickness of the wall can be chosen as around 100% and 6% of the depth of final excavation level, respectively. The stiffness of the strut may also be chosen as $5{\times}105kN/m/m$ to achieve best possible performance under seismic condition.

A Challenge to Development and Environmental Protection in China (중국의 개발과 환경보전에의 도전)

  • 조윤숭
    • Journal of environmental and Sanitary engineering
    • /
    • v.8 no.2
    • /
    • pp.123-148
    • /
    • 1993
  • Over the past-decade of reform and opening up to the outside world, China#s GNP doubled which now ranks eighth in the world, making an average 9.6% increase annually. Some industrial products such as steel, crude oil and power generation rank fourth in the world, while output of coal and cement rank first. In the agricultural sector, China ranks first in the output of grain, cotton, meat and basically solved the problem of providing food and daily necessities for 22% of the world#s population, The Chinese government has set the objectives in environmental protection plan to be achieved by the year 2000 together with ecological protection. During the Seventh Pive-Year Plan(1985-90), Chains#s annual investment in controlling environment pollution was about 10 billion Yuan, or 0.7% of her GNP, while during the Eighth Five-Year Plan, effort will be made to increase such investments, in terms of the GNP, possibly to 0.85"1% . However, the expanding development including industrial production will increase large amounts of pollutants into the environment and efforts are underway to deal with these pollution. *대한위생학회장 Regional community are faced with serious environmental problems. For instance, so called# Yellow Sand Storm# from China is one of the case. Recently, to make matter worse, acid rain and dry depositation from transboundary air pollution is tend to increase mainly because of emissions from mainland China. Therefore, the countries concerned in the region, should seek to promote international cooperation on environmental issues. An overall aspects of development and environmental programs in China are presented.

  • PDF

Analysis of post-failure response of sands using a critical state micropolar plasticity model

  • Manzari, Majid T.;Yonten, Karma
    • Interaction and multiscale mechanics
    • /
    • v.4 no.3
    • /
    • pp.187-206
    • /
    • 2011
  • Accurate estimations of pre-failure deformations and post-failure responses of geostructures require that the simulation tool possesses at least three main ingredients: 1) a constitutive model that is able to describe the macroscopic stress-strain-strength behavior of soils subjected to complex stress/strain paths over a wide range of confining pressures and densities, 2) an embedded length scale that accounts for the intricate physical phenomena that occur at the grain size scale in the soil, and 3) a computational platform that allows the analysis to be carried out beyond the development of an initially "contained" failure zone in the soil. In this paper, a two-scale micropolar plasticity model will be used to incorporate all these ingredients. The model is implemented in a finite element platform that is based on the mechanics of micropolar continua. Appropriate finite elements are developed to couple displacement, micro-rotations, and pore-water pressure in form of $u_n-{\phi}_m$ and $u_n-p_m-{\phi}_m$ (n > m) elements for analysis of dry and saturated soils. Performance of the model is assessed in a biaxial compression test on a slightly heterogeneous specimen of sand. The role of micropolar component of the model on capturing the post-failure response of the soil is demonstrated.