A feeding trial was conducted to investigate the influence of feeding Lactobacillus reuteri culture (LR) on productive performance, intestinal microflora and availability in laying hens. Four hundred and eighty, Isa-Brown layers, 49 weeks of age, were fed diets supplemented with LR at the level of 0 (control), 0.1, 0.2, and $0.4\%$ of the diets for eight weeks. Egg production and egg weight were measured daily. Feed intake was weighed every two weeks. Egg quality was measured three times at the start, mid-term, and end of the experiment. Intestinal microflora were examined for Lactobacillus spp., E. coli and Salmonella at the end of the experiment. Overall egg production was the highest in $0.2\%$ LR (P<0.05), but that of $0.1\%$ or $0.4\%$ LR treatments did not significantly differ from that of control. Egg weight was significantly higher in LR feeding group than the control (P<0.05). Daily egg mass was significantly higher in $0.2\%$ and $0.4\%$ LR treatments compared to the control and $0.1\%$ LR (P<0.05). The number of jumbo and extra large eggs were increased in LR supplemented groups, especially in $0.1\%$ LR. Feed intake of layers fed LR supplemented diets tended to be lower than the control. However, feed conversion ratio significantly improved in LR supplemented groups (P<0.05). Availability of dry matter and crude protein improved significantly in $0.4\%$ LR treatment (P<0.05). But, those of ether extract and crude ash were not significantly different among treatments. Eggshell breaking strength and eggshell thickness were not significantly influenced by LR supplementation, and Haugh unit and yolk index were also similar to the control. Total number of Lactobacillus spp. in ileum and cecum fed LR supplemented diets were significantly higher than those of the control (P<0.05). There were no significant differences in intestinal E. coli and Salmonella in all treatments. Therefore, it is concluded that dietary supplementation of Lactobacillus reuteri culture can improve the laying performance, feed efficiency and intestinal Lactobacillus.
This study was carried out to monitor feed-nutritional components, toxic heavy metals (Cd, Pb and As) and pesticide residues through three cultivation stages (1st initial culture stage, 2nd mycelial growth stage, and 3rd fruit body-harvested stage) of king oyster mushroom (Pleurotus eryngii) produced by bottle type cultivation and oyster mushroom (Pleurotus osteratus) produced by vinyl bag type cultivation. For both cultivation types, compared with the initial culture, the weight reduction rate in spent mushroom substrates (SMS) after fruit body harvest was 29% for total wet mass, 21~25% for dry and organic matters and 19 ~22% for neutral detergent fiber. Two thirds to 3/4 of organic matter degraded and utilized by mycelia and fruit bodies was originated from fiber, of which the primary source (50~70%) was hemicellulose. The effect of mycelial growth stage on chemical compositional change in culture was little (P>0.05) for bottle type cultivation of king oyster mushroom but considerable (P<0.05) for vinyl type cultivation of oyster mushroom. Culture nutrients uptake by fruit bodies was very active for the bottle type cultivation. Compared with SMS, harvested fruit bodies (mushrooms) contained higher (P<0.05) crude protein, non-fibrous carbohydrate, and crude ash and lower (P<0.05) neutral detergent fiber. Regardless of stages, no culture samples were contaminated with toxic heavy metals and pesticide residues. In conclusion, the increase of fiber (neutral and acid detergent fibers) and indigestible protein contents and the decrease of true protein content in SMS indicated that the feed-nutritional value of SMS was significantly reduced compared with that of the initial culture and they were safe from toxic heavy metals and pesticide residues.
The object of this study is to investigate the quality change of sweet basil grown with selenium(Se) in hydroponic culture. Sweet basil was cultured with 1 fold herb nutrient solution as suggested by European vegetable R & D Center in Belgium. Before three weeks harvest, sodium selenate(N $a_2$Se $O_4$) was supplied to 2 and 4 mg. $L^{-1}$ in the nutrient solution. Sweet basil was stored at 1$0^{\circ}C$ using 40um ceramic film and PET (polyethylene terephalate) for 15 days in modified atmosphere(MA) storage condition. The weight loss of sweet basil was higher in non-treatment compared to Se treatments in both of two films but it was decreased over 5% in PET treatment. Se concentrations in leaf tissues increased in the response to the treated levels of N $a_2$Se $O_4$concentrations, and this tendency was appeared similar results after storage. There was no significant effect of packing materials on volatilization of Se in sweet basil. The total chlorophyll and essential oil content was increased with increasing N $a_2$Se $O_4$concentration in nutrient solution. The amount of volatilization flavor was not higher at N $a_2$Se $O_4$4mg. $L^{-1}$ treatment compare to others during storage. Se content was 112.73 ug. $g^{-1}$ dry mass at 2 mg. $L^{-1}$ treatment before storage and the decrease of Se content was observed by 50% at 15 days after storage. The condition, which N $a_2$Se $O_4$2mg. $L^{-1}$$^{plement}$ in nutrient solution during growth stage and stored with 40um ceramic film on 1$0^{\circ}C$are acceptable for maintaining of sweet basil quality. Moreover it can be a proper Se concentration for human health. Overall, Se treatment in nutrient solution has effect on promoting and maintaining quality of herb during storage life. Also, there was not significant change of essential oil compounds by volatilization of Se.mpounds by volatilization of Se.
Fruit bodies similar to the Phellinus sp. residing on the mulberry were collected at Yang-yang in Kang-won-do province and one strain of Phellinus sp. was isolated from the fruit bodies. For mass production of the isolated mycelia in a submerged culture, the culture conditions, medium composition, and the effect of various culture systems on the mycelial growth, were investigated. The morphological characteristics of the fruit body were as follows: covered with blackish to black and rough, lower surface with yellowish-brown to dull-brown and smooth, 5-7 cm thick and hard woody. Also, the pure cultured mycelia showed yellowish-brown color, capability of purplish-brown pigment production on the PDA plate media, no-formation of clamp-connection, much binding branch, and enzyme activities such as laccase, tyrosinase and peroxidase. Therefore, pure cultured strain was identified to be Phellinus sp. In the flask culture, the optimum culture conditions for the mycelial production were obtained after cultivation of 8 days at inoculum level of 5%(v/v), media volume of 70 mL, 150 rpm, initial pH 6, and temperature of $30^{\circ}C$. Optimum medium composition from the response surface analysis were determined to be glucose 12.12 g/L, sucrose 12.12 g/L, yeast extract 11.15 g/L, malt extract 11.15 g/L, $KH_2PO_4$ 0.855 g/L and $CaCl_2$ 0.855 g/L. The production of the mycelia after 4 and 8 days of cultivation was 1.95 and 9.89 g/L, respectively. The maximum specific growth rate and productivity were $0.020\;hr^{-1}$ and 1.25 g/L/day, respectively. Among the three different culture systems for the growth of mycelia, the maximum mycelial dry weight of 7.5 g/L was obtained after cultivation of 4 days in the air-lift fermentor under aeration rate of 2.5 vvm. The maximum specific growth rate and productivity were $0.033\;hr^{-1}$ and 1.9 g/L/day, respectively, which were about 1.7 and 4.2 times higher than those of flask culture.
Recently, wood-framed houses has been built in the Korea for pension. Wood is good material for human healthy, while the construction lumbers are treated with preservative such as CCA (chromated copper arsenate), which contain some toxic elements for human body. However, if the waste woody biomass treated with various heavy metals, which has been collected from house construction or demolition, was fired in the field, and incinerated or landfilled after mass collection, such components will result in the toxic air pollutants in the burning or land fills, and spreaded into other areas. So the careful selection of wood and chemicals are required in advance for house construction, in particular, for environment-friendly housings. Therefore, this study was carried out to determine the content of toxic heavy metals in woody materials such as domestic hinoki and imported hemlock treated with CCA for housing materials, and the post-treated wood components such as organic fertilizer, sludge, dry-distilled charcoal and carbonized charcoal, to be returned finally into soil. The results are as follows. 1) The chemical analysis of toxic trace elements in various solid biomass required accurate control and management of laboratory environment, and reagents and water used, because of the error of data due to various foreign substances added in various processing and transporting steps. So a systematic analyzers was necessary to monitor the toxic pollutants of construction materials. 2) In particular, the biomass treated with industrial biological or thermal conditions such as sludge or charcoals was not fully dissolvable after third addition of $HNO_3$ and HF. 3) The natural woody materials such as organic fertilizer, sludge. and charcoals without any treatment of preservatives or heavy metal components were nontoxic in landfill because of the standard of organic fertilizers, even after thermal or biological treatments. 4) The CC A-treated wood for making the construction wood durable should not be landfilled, because of its higher contents of toxic metals than the criterion of organic fertilizer for agriculture or of natural environment. So the demolished waste should be treated separately from municipal wastes.
Kang, Ui-Gum;Jung, Yeun-Tae;Somasegaran, Padma;Hoben, H.;Bohlool, B. Ben
Korean Journal of Soil Science and Fertilizer
/
v.24
no.1
/
pp.61-68
/
1991
Thirty Bradyrhizobium japonicum isolates (10 strains per each soil) from 1 uncultivated [Sangnam(Soil 1), Milyang]- and 2 cultivated [Dong(Soil 2)and Chinbuk(Soil 3), Changweon] upland soils in Yeongnam area were evaluated on their symbiotic effectiveness to soybean [Glycin max (L.)] cv. Korean Jangbaekkong and American Clark and examined on their serological diversity. The results obtained were summarized as follows : 1. On symbiotic effectiveness of B. japonicum with plant genotypes, isolates showed a relatively high value of nodule mass in Jangbaekkong cv. and of shoot dry weight and total nitrogen in Clark cv. demonstrating the order of Soil 1> Soil 2> Soil 3 isolates. 2. Among 30 B. japonicum isolates, YCK 141 showed the best effectiveness on mean nitrogen fixation of two cultivars. 3. Thirty indigenous B. japonicum showed 6 types of serological diversities in the immunoblot analysis which were present in various proportions at Soil 2(5) and Soil 3(5) except Soil 1 where all isolates fell into the YCK 117 serogroup. And their distribution order was serotype YCK 117( 12 strains) > USDA 1l0(5strains), USDA 123(5 strains) > YCK 150(4 strains) > YCK 141(3 strains) > YCK 226(1 strain). 4. Especially, 10 isolates from Soil 1, an uncultivated orchard, showed a very homologous pattern in not only effectiveness but serological distribution. It seemed to indicate that the isolates were typically affected by numerous physical and environmental factors of the soil.
To evaluate the effect of the fertilizer concentration after flowering on growth a31d fruit setting of ornamental pepper (Capsicum annuum L.), plants were fertilized with $100\;mg{\cdot}L^{-1} of N ($EC=0.8\;dS{\cdot}m^{-1}) until flowering, and then with 0 (no fertilizer), 100, 200 or $300\;mg{\cdot}L^{-1} of N (fertilizer solution EC of 0.15, 0.8, 1.45 or $2.10\;dS{\cdot}m^{-1}, respectively) until harvest. Maximum leaf area and shoot dry mass at the end of the growing period were obtained when plants were fertilized with $200\;mg{\cdot}L^{-1} of N. Total fruit number per plant at the end of the growing period was not different when plants were fertilized with 100,200 or 300 mg{\cdot}L^{-1}of N concentration. When plants were fertilized with $200\;mg{\cdot}L^{-1} of N, the number of fruits per plant was decreased significantly as compared to 100, 200 or $300\;mg{\cdot}L^{-1} of N, whereas the percentage of red fruits at the end of the growing period was maximized. Total fruit fresh weight per plant at the end of the growing period was highest with the concentration of $200\;mg{\cdot}L^{-1} of N. The EC of the growing medium remained within 0.8 to $1.2\;dS{\cdot}m^{-1}\;2.0\;to\;3.0dS{\cdot}m^{-1}, or 3.0 to 4.5 dS{\cdot}m^{-1}when fertilizer concentrations were 100, 200 or $300\;mg{\cdot}L^{-1} of N, respectively. Throughout most of the experiment, the pH of the growing medium remained within 5.4 to 6.2, but dropped to 4.9 near the end of the experiment when fertilizer concentration was 200 or 300\;mg{\cdot}L^{-1} of N. Content of most of the nutrients In the leaf was not affected by the different fertilizer concentration. Only aluminum was significantly affected and decreased linearly with increasing fertilizer concentration. The results from this study indicated that optimal fertilizer concentration after flowering for commercial production of ornamental pepper was 100 or $200\;mg{\cdot}L^{-1} of N. At these concentrations, the EC of the growing medium remained approximately within 0.8 to 1.2 and 2 to $3\;dS{\cdot}m^{-1}, respectively. This appears to be the optimal range for vegetative growth or fruit setting of ornamental pepper plants, and indicates that ornamental pepper can be grown with a fairly wide range of fertilizer concentrations.
As an abiotic stress, chilling stress is one of the major factors limiting plant growth and increasing susceptibility to pathogens. Therefore, enhancing stress tolerance in plants is an important strategy for their survival under unfavorable environmental conditions. The objective of this study was to determine the effects of the exogenous application of salicylic acid (SA) or nitric oxide (NO) on chilling tolerance in pepper seedlings. Pepper (Capsicum annuum L. 'kidaemanbal') seedlings were grown under normal growing conditions ($20/25^{\circ}C$, 15 hours photoperiod, $145{\pm}5{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, fluorescence lamps) for 23 days after transplanting. The solution (3 mL) of 1 mM SA and 0.3 mM NO with surfactant triton 0.1% were sprayed two times a week, respectively. Right after the completion of chemical application, seedlings were subjected to chilling condition at $4^{\circ}C$ for 6 hours under dark condition and then the seedlings were recovered at the normal growing conditions for 2 days. In order to assess plant tolerance against chilling stress, growth characteristics, chlorophyll fluorescence (Fv/Fm), and membrane permeability were determined after chilling stress imposition. Total phenolic concentration and antioxidant capacity were measured during the whole experimental period. Disease incidence for pepper bacterial spot and wilt was also analyzed. Pepper seedlings treated with SA or NO were maintained similar dry mass ratio, while the value in control increased caused by chilling stress suggesting relatively more water loss in control plants. Electrolyte leakage of pepper seedlings treated with SA or NO was lower than that of control 2 days after chilling treatment. Fv/Fm rapidly decreased after chilling stress in control while the value of SA or NO was maintained about 0.8. SA increased higher total phenolic concentration and antioxidant capacity than NO and control during chemical treatment. In addition, increase in total phenolic concentration was observed after chilling stress in control and NO treatment. SA had an effect on the reduction of bacterial wilt in pepper seedlings. The results from this study revealed that pre-treatment with SA or NO using foliar spray was effective in chilling tolerance and the reduction of disease incidence in pepper seedlings.
Greenhouse experiments were conducted to avaluate strain competition, nodulation, patterns of nodule occupancy and population changes of Bradyrhizobium sp. strain HCR-46 $str^{r}cep^{r}$ and CB756 $str^{r}rif^{r}$ in the rhizosphere of peanut(Arachis hypogaea L.) under different root temperatures. Inoculated with two strains using seed coating with peat slurry under different root temperatures, population of each strain in the rhizosphere increased with plant growth and multiplication rate of inoculum in the unit weight of root were showed the highest from 10 to 15days after sowing. The multiplication rate of inoculum in the rhizosphere was $28^{\circ}C$>$34^{\circ}C$>$22^{\circ}C$. The density of HCR-46 $str^{r}cep^{r}$ was more increased than that of CB756 $str^{r}rif^{r}$ under $22^{\circ}C$ and $28^{\circ}C$. While the density of two strains showed no difference under $34^{\circ}C$. Inoculated with HCR-46 $str^{r}cep^{r}$ and CB756 $str^{r}rif^{r}$, respectively at 22, 28 and $34^{\circ}C$, nodulation of each strain was dominated in its inoculation portion. Inoculated with the mixture of HCR-46 $str^{r}cep^{r}$ and CB756 $str^{r}rif^{r}$, occupancy rate of HCR-46 $str^{r}cep^{r}$ was dominated over that of CB756 $str^{r}rif^{r}$ at $22^{\circ}C$ and $28^{\circ}C$, but that was similar between them at $34^{\circ}C$. Dry mass, nodulation, nitrogen content per plant and nitrogenase activity showed higher at $28^{\circ}C$ than at $32^{\circ}C$ and $22^{\circ}C$, while those were higher in HCR-46 $str^{r}cep^{r}$ and mixing HCR-46 $str^{r}cep^{r}$ with CB756 $str^{r}rif^{r}$ than in CB756 $str^{r}rif^{r}$.
Specific carotenoids and astaxanthin biosynthesis power of Phaffia rhodozyma mutant 876, which was obtained after NTG a and UV treatments, was higher than those of the wild type by 40% and 50%, respectively. The mutant strain did not show t the catabolite repression even at 22% (w/v) glucose concentration. The optimum C{N ratio was 2.0, and the optimum t temperature and initial pH were $22^{\circ}C$ and 6.0, respectively. 80th cell growth and astaxanthin formation decreased drastically a as the fermentation temperature was increased over $22^{\circ}C$, whereas they were comparable in the pH range between 5.0 and 7 7.0. Inoculum size did not affect the final cell density nor the carotenoids biosynthesis, and 3%(v/v) was selected as optimal. H Higher dissolved oxygen concentration facilitated astaxanthin biosynthesis, and aeration rate of 1.0 v/0/m and agitation speed of 400 rpm were selected as optimum. The final cell dens때 of 43.3 g/L and the volumetric astaxanthin and carotenoids concentrations of 110.6 mg/L and 149.4 mg/L, respectively, were obtained. The specific carotenoids concentration was 3.45 m mg{g-yeast(dry). Yx/s and Yp/s values of 0.37 and 1.08 were obtained. The result of this study will provide basic information u useful for mass production of astaxanthin from P. rhodozyma fermentation.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.