• Title/Summary/Keyword: dry and wet thermal

Search Result 139, Processing Time 0.027 seconds

A Study on the Grinding Characteristics According to Cooling Methods (대체냉각 기술을 이용한 환경친화 연삭가공 기술)

  • Lee, S.W.;Choi, H.Z.;Heo, N.H.;Lee, J.H.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.962-967
    • /
    • 2003
  • Recently, environmental pollution has become a serious problem in industry, and many researches have been done in order to preserve the environment. The coolant, which promotes lubrication, cooling and penetration, contains chlorine, sulfur and phosphorus to improve the machining efficiency. These additives, which move around into the air during machining, pollute working. Therefore, many researches on how to reduce the amount of coolant during machining have been carried out. However, to reduce even small amount of coolant causes high temperature of a workpiece and it brings thermal defects. In this study, the experiments of wet & dry grinding using cooling methods (using coolant only, mist and compressed cold air only) are performed to solve the problem of environmental contamination and to get a better surface integrity of a workpiece by comparing surface roughness, roundness and residual stress.

  • PDF

Effect of Processing Condition of Texturing M/C on the Physical Properties of Textured Polyester Filament (폴리에스테르 필라멘트의 텍스쳐링 공정조건이 사물성에 미치는 영향)

  • 김승진;안병훈;이민수
    • Textile Coloration and Finishing
    • /
    • v.11 no.6
    • /
    • pp.18-23
    • /
    • 1999
  • PET POY(pre-oriented-yam) were treated by false twister to high bulky. False twister have many processing parameters velocity ratio(VR), belt cross angle$(\theta)$, 1st heater temp. and K(twisting tension/untwisting tension). we analyzed the effect of properties of textured polyester yam on processing condition. Initial modulus, thermal stress, No. of snarl is decreased by 1st heater. In VR=1.97, Dry and wet shrinkage is increased but is decreased by 1st heater in VR=1.564. K/S and cristallinity tend to increase by decreasing VR.

  • PDF

A Study on the Thermal Aging and SOx Poisoning Characteristics on Alumina Supported Silver Catalyst under Diesel Engine Emission Condition (디젤엔진 배기가스조건하에서의 Pt 및 Ag 담지 알루미나 촉매의 열적 노화 특성과 SOx 피독 특성에 관한 연구)

  • 신병선
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.2
    • /
    • pp.199-208
    • /
    • 2000
  • In this study we investigated on the possibility of platinum and silver catalysts as de-NOx catalyst for activity test of supported metal oxide catalysts. the study was performed with the change of amount of metal and support types. The catalyst was prepared the activity of alumina supported silver catalyst produced by dry and wet impregnation method respectively and the resistance of sulfur for optimum supported silver catalyst,. As a result the activity of alumina supported platinum catalyst was showed at low temperature region but the case of silver catalyst activated at high temperature region. So we finally chose alumina supported silver catalyst as de-NOx target catalyst because alumina supported catalyst showed higher activity than alumina supported platinum catalyst.

  • PDF

Development of Carbon-Ceramic Composites using Fly Ash and Carbon Fibers as Reinforcement

  • Manocha, S.;Patel, Rakesh
    • Carbon letters
    • /
    • v.7 no.1
    • /
    • pp.27-33
    • /
    • 2006
  • Carbon-ceramic composites were fabricated by using fly ash and PANOX fibers as reinforcement. Fly ash, because of its small size particles e.g. submicron to micron level can be effectively dispersed along with fibrous reinforcements. Phenolic resin was used as carbon precursor. Both dry as well as wet methods were used for forming composites. The resulting composites were characterized for their microstructure, thermal and mechanical properties. The microstructure and mechanical properties of composites are found to be dependent on type of the fly ash, fibrous reinforcements as well as processing parameters. The addition of fly ash improves hardness and the fibers, which get co-carbonized on heat treatment, increase the flexural strength of the carbon-ceramic composites. Composites with dual reinforcement exhibit about 30-40% higher strength as compared to the composites made with single reinforcement, either with fly ash as filler or with chopped fibers.

  • PDF

A Study on the Surface Grinding Temperature Characteristics of the Carbon Fiber Epoxy Composite Materials (탄소섬유 에폭시 복합재료의 평면 연삭온도 특성에 관한 연구)

  • 한흥삼
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.441-446
    • /
    • 2000
  • Although the net-shape molding of composites is generally recommended, molded composites frequently required cutting or grinding due to the dimensional inaccuracy for precision machine elements. During the composite machining operations such as cutting and grinding, the temperature at the grinding area may increase beyond the allowed limit due to the low thermal conductivity of composites, which might degrade the matrix of composite. Therefore, in this work, the temperature at the grinding point during surface grinding of carbon fiber epoxy composite was measured. The grinding temperature and surface roughness were also measured to investigate the surface grinding characteristics of the composited. The experiments were performed both under dry and wet grinding conditions with respect to cutting speed, feed speed, depth of cut and stacking angle. From the experimental investigation, the optimal conditions for the composite plain grinding were suggested.

  • PDF

A Study on the Grinding Characteristics of the Carbon Fiber Epoxy Composite Material Grinding Temperature (탄소섬유 에폭시 복합재료 연삭온도에 의한 연삭특성)

  • 한흥삼;이동주
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.6
    • /
    • pp.65-70
    • /
    • 2000
  • Although the net-shape molding of composites is generally recommended, molded composites frequently requires cutting or grinding due to the dimensional inaccuracy for precision machine elements. During the composite machining operations such as cutting and grinding, the temperature at the grinding area may increase beyond the allowed limit due to the low thermal conductivity of composites, which might degrade the matrix of composite. Therefore, in this work, the temperature at the grinding point during surface grinding of carbon fiber epoxy composite was measured. The grinding temperature and surface roughness were also measured to investigate the surface grinding characteristics of the composites. The experiments were performed both under dry and wet grinding conditions with respect to cutting speed, feed speed, depth of cut and stacking angle. From the experimental investigation, the optimal conditions for the composite surface grinding were suggested.

  • PDF

A review on a 4 K cryogenic refrigeration system for quantum computing

  • Park, Jiho;Kim, Bokeum;Jeong, Sangkwon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.2
    • /
    • pp.1-6
    • /
    • 2022
  • This paper reviews the literature that has been published since 1980s related to cryogenic refrigeration systems for quantum computing. The reason why such a temperature level of 10-20 mK is necessary for quantum computing is that the superconducting qubit is sensitive to even very small thermal disturbances. The entanglement of the qubits may not be sustained due to thermal fluctuations and mechanical vibrations beyond their thresholds. This phenomenon is referred to as decoherence, and it causes an computation error in operation. For the stable operation of the quantum computer, a low-vibration cryogenic refrigeration system is imperative as an enabling technology. Conventional dilution refrigerators (DR), so called 'wet' DR, are precooled by liquid helium, but a more convenient and economical precooling method can be achieved by using a mechanical refrigerator instead of liquid cryogen. These 'dry' DRs typically equip pulse-tube refrigerators (PTR) for precooling the DRs around 4 K because of its particular advantage of low vibration characteristic. In this review paper, we have focused on the development status of 4 K PTRs and further potential development issues will be also discussed. A quiet 4 K refrigerator not only serves as an indispensable precooler of DR but also immediately enhances the characteristics of low noise amplifiers (LNA) or other cryo-electronics of various type quantum computers.

A Study on the Performance of Heat Exchanger for Closed Cooling Tower (밀폐식 냉각탑용 열교환기의 성능에 관한 연구)

  • Lee, Sang-Sik;Yoo, Seong-Yeon;Kim, Jin-Hyuck;Ahn, Young-Hwan;Park, Hyoung-Joon;Ryu, Hae-Sung
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.334-339
    • /
    • 2008
  • An closed cooling tower is a device similar to a general cooling tower, but with cooling tower replaced by a heat exchanger. The purpose of this study is to evaluate thermal performance of heat exchanger at various conditions and to provide design datebase. The experimental study regarding heat exchanger for closed cooling tower was conducted. Experimental apparatus consists of constant temperature bath, water pump, spray nozzle, heat exchanger, fan, and date acquisition system. Heat transfer rates at various air velocitys, water flow rates, two different spray modes were measured and heat transfer coefficient were calculated to compare the thermal performances. This study provides that the heat transfer coefficient increases with increasing spray water flow rate and with increasing air velocity. The wet mode was more effective than dry mode for closed cooling tower to this study.

  • PDF

A study on the relationship between the thermal properties of rock and the enviroment in underground spaces (암반 열물성과 지하공간 환경분석 연구)

  • Lee, Chang-Woo
    • Tunnel and Underground Space
    • /
    • v.6 no.4
    • /
    • pp.335-341
    • /
    • 1996
  • This fundamental study analyzes the relationship between rock thermal properties and psychrometric properties in underground space and has a ultimate goal to develope technologies for predicting major environmental variables. The study is divided into 2 subjects (1) developement of a basic model for predicting temperature and humidity, (2) analysis of the validity of the model through application to a local underground storage space for military supplies. The basic model is built for the network of tunnel-shaped underground spaces. The model takes into account rock thermal properties and changes in moisture content in the air due to condensation/evaporation on the rock surface. Using lumped-parameter analytical method, heat flux from or to the surrounding rock is calculated and then the psychrometric properties(air quantity, pressure, temperature, humidity) are estimated through network simulation. The model can be utilized regardless of the tunnel type. The study site is a local storage space built in rock, mainly granite gneiss and quartz-porphyry. It is a U-shaped tunnel, 593.5m long and 6x6.5m wide. Relative humidity inside has to be strictly controlled under 55% to avoid erosion of a certain types of supplies stored in 6 chambers with the capacity of 300~1.000 ton. The thermal conductivity varies between 2.734 and 2.779W/m$^{\circ}C$ and the thermal diffusivity is in the range of 1.119 and $1.152{\times}10^{-6}\;m^2/s$ the specific heat between 910 and $920\;J/kg^{\circ}C$. Relative errors of the predicted values of dry/wet temperature and relative humidity are 0.8~3.0%, 0~7.5% and 0~7.0%, respectively. Apparent errors associated with the rock surface temperature seems to be partly due to the intrinsic limitations in the infrared thermometer used in this study.

  • PDF

The Influence of Landscape Pavements on the WBGT of Outdoor Spaces without Ventilation or Shade at Summer Midday (조경포장이 옥외공간의 온열쾌적성지수(WBGT)에 미치는 영향 - 통풍과 차광이 배제된 하절기 주간의 조건에서 -)

  • Lee, Chun-Seok;Ryu, Nam-Hyung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.38 no.2
    • /
    • pp.1-8
    • /
    • 2010
  • The purpose of the study was to evaluate the influence of landscaping pavements on WBGT(Wet-Bulb Globe Temperature) of outdoor spaces that lack ventilation and shade at summer midday. The relative humidity(RH), dry-bulb temperature(DT) and globe temperature(GT) were recorded every minute from June to October 2009 at a height of 1.2m above ten experimental beds with different pavements, by a measuring system consisting of an electric humidity sensor(GHM-15), resistance temperature detector(RTD, Pt-100), standard black globe(${\phi} 150mm$) and data acquisition systems(National Instrument's Labview and Compact FieldPoint). Additionally, the surface dry-bulb temperatures also were recorded and compared. The area of each experimental bed was 1.5m(W)${\times}$2.0m(L) and ten different kinds of pavement were used including grass, grass+cubic stone, grass+porous brick, brick, stone panels, cubic stone, interlocking blocks, clay brick, naked soil, gravel and concrete. To prevent interference from ventilation, a 1.5m height cubic steel frame was established around each bed and each vertical side of the frame was covered with transparent polyethylene film. Based on the records of the hottest period from noon to 3 PM on 26 days with a peak dry-bulb temperature over $30^{\circ}C$ at natural condition, the wet-bulb temperature(WT) and WBGT were calculated and compared. The major findings were as follows: 1. The average surface DT was $40.1^{\circ}C$, which is $9^{\circ}C$ higher than that of the natural condition. The surface DT of the pavements with grass were higher than those of concrete and interlocking block. The peak DT of the surface almost every pavement rose to above $50^{\circ}C$ during the hottest time. 2. The averages of DT, WT and GT were $40.1^{\circ}C$, $27.5^{\circ}C$ and $49.1^{\circ}C$, and the peak values rose to $48.1^{\circ}C$, $45.8^{\circ}C$ and $59.5^{\circ}C$, respectively. In spite of slight differences that resulted according to pavements, no coherent differentiating factor could be found. 3. The average WBGT of grass was the highest at $34.3^{\circ}C$ while the others were similar in the range of around $33{\pm}1^{\circ}C$. Meanwhile, the peak WBGT was highest with stone panel at $47.9^{\circ}C$. Though there were some differences according to pavements, and while grass seemed to be worst in terms of WBGT, it seems difficult to say ablolutely that grass was the worst because the measurement was conducted without ventilation and shade during summer daytime hours only, which had temperatures that rose to a dangerous degree(above $45^{\circ}C$ WBGT), withering the grass during the hottest period. The average WBGT resulted also showed that the thermal environment of the pavement without ventilation and shade were at an intolerable level for humans regardless of the pavement type. In summary, the results of this study show that ventilation and shade are more important factor than pavement type in terms of outdoor thermal comfort in summer daylight hours.