• Title/Summary/Keyword: drug-release

Search Result 955, Processing Time 0.038 seconds

Controlled Release of Paclitaxel from Biodegradable Polymer Films for Drug-Eluting Stents (약물방출 스텐트용 생분해성 고분자 필름으로부터 파크리탁셀의 조절 방출)

  • Kim, Si-Eun;Lee, Bong-Soo;Kim, Jin-Hyang;Park, Kwi-Deok;Han, Dong-Keun
    • Polymer(Korea)
    • /
    • v.34 no.2
    • /
    • pp.172-177
    • /
    • 2010
  • Although many researchers have studied the efficacy of paclitaxel (PTX) on many cells during the last two decades, little work has been reported on the importance of release kinetics inhibiting cell proliferation. The aim of this study is to examine the release behavior of the PTX on various biodegradable polymers such as poly(lactic-co-glycolic acid)(PLGA), poly-L-lactide (PLLA), and polycaprolactone (PCL) for drug-eluting stents (DES). The PTX from the fabricated films was released for 8 weeks and the degree of degradation of the films was observed by FE-SEM. Although the degradation time of PCL was the slowest, the PTX release rate was the fastest among them and followed by PLGA and PLLA with the equivalent PTX concentration. It suggests that hydrophobic drug such as PTX from polymer with low $T_g$ like PCL could be moved easily and released rapidly in body temperature.

Induction of Growth Hormone Release by Dioscin from Dioscorea batatas DECNE

  • Lee, Ho-Young;Jung, Dae-Young;Ha, Hye-Kyung;Son, Kun-Ho;Jeon, Su-Jin;Kim, Chung-Sook
    • BMB Reports
    • /
    • v.40 no.6
    • /
    • pp.1016-1020
    • /
    • 2007
  • In this study, dioscin was isolated from Dioscoreae Rhizoma (DR), which is the rhizome of Dioscorea batatas DECNE. that inhabits broad areas of Korea and Japan. To determine whether dioscin induced growth hormone (GH) release, we evaluated its induction effects on GH release both in vitro and in vivo. The 70% methanol extract of DR, and its n-hexane and n-BuOH fractions, induced rat GH (rGH) release in rat pituitary cells 10-fold, 8-fold, and 5-fold higher than the control ($0.36{\pm}0.02 nM$), respectively (p < 0.05 each). The dioscin-induced rGH release of the cells was concentration-dependent and its $ED_{50}$ was $1.14{\times}10^{-5} M$. Within 90 minutes after intravenous administration of $10{\mu}g$/kg (p < 0.05 at $t_{max}$), dioscin caused the greatest increase in rGH concentration ($C_{max}$) in the rat plasma ($34.16{\pm}14.10 ng/ml$) (n = 4), which was twice as high as the control group ($12.88{\pm}3.29 ng/ml$) (n = 27).

Dual Responsive Pectin Hydrogels and Their Silver Nanocomposites: Swelling Studies, Controlled Drug Delivery and Antimicrobial Applications

  • Reddy, P. Rama Subba;Eswaramma, S.;Krishna Rao, K.S.V.;Lee, Yong Ill
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2391-2399
    • /
    • 2014
  • Novel dual responsive pectin hydrogels composed from poly(acrylamidoglycolic acid-co-vinylcaprolactam)/Pectin (PAV-PC) and also PAV-PC hydrogels are used as templates for the production of silver nanoparticles. 5-Fluorouracil is an anticancer drug and has been loaded in situ into PAV-PC hydrogels. Structure and morphology characterization of PAV-PC hydrogels were investigated by fourier transform infrared spectroscopy, differential scanning calorimetry, thermo gravimetric analysis, X-ray diffraction studies, scanning electron microscopy and transmission electron microscopy. The results revealed a molecular level dispersion of the drug in PAV-PC hydrogels. In vitro release of 5-fluorouracil from the PAV-PC hydrogels has been carried out in GIT fluids as well as in various temperatures. 5-Fluorouracil released from PAV-PC hydrogels was 50% at pH 1.2, and 85% at pH 7.4 within 24 h. The release profile was characterized with PAV-PC hydrogels and initial burst effect was significantly reduced in two buffer media (1.2 and 7.4), followed by a continuous and controlled release phase, the drug release mechanism from polymer was due to Fickian diffusion. In situ fabrication of silver nanoparticles inside the hydrogel network via the reduction of sodium borohydrate by PAV-PC chains led to hydrogel nanocomposites. The diameter of the nanocomposites was about 50-100 nm, suitable for uptake within the gastrointestinal tract due to their nanosize range and mucoadhesive properties. These nanocomposite PAV-PC hydrogels showed strong antimicrobial activity towards Bacillus subtilis (G+ve) and Escherichia coli (G-ve).

Chitosan Increases the Release of Renal Dipeptidase from Porcine Renal Proximal Tubule Cells

  • Hyun Joong, Yoon;Kim, Young-Ho;Park, Sung-Wook;Lee, Hwanghee-Blaise;Park, Haeng-Soon
    • Animal cells and systems
    • /
    • v.7 no.4
    • /
    • pp.309-315
    • /
    • 2003
  • Renal dipeptidase (RDPase, membrane dipeptidase, dehydropeptidase 1, EC 3.4.13.19) has been widely studied since it was first purified from porcine kidney brush border membrane. It was reported that RDPase activity in urine samples of acute and chronic renal failure patients decreases. Nitric oxide (NO) is a highly reactive free radical involved in a number of physiological and pathological processes. NO is able to act in a dual mode, leading either to induction of apoptosis or to blunted execution of programmed cell death. NO inhibited the RDPase release from porcine renal proximal tubules, which could be blocked by L-NAME. Chitosan, the linear polymer of D-glucosamine in $\beta$(1\longrightarrow4) linkage, not only reversed the decreased RDPase release by NO but also increased NO production in the proximal tubule cells. The stimulatory effect of NO on RDPase release from proximal tubules in the presence of chitosan must be different from the previously proposed mechanism of RDPase release via NO signaling pathway. Chitosan stimulated the RDPase release in the proximal tubules and increased RDPase activity to 220% and 250% at 0.1% and 1%, respectively. RDPase release was decreased to about 40% in the injured proximal tubules and was recovered in proportion to the increase of chitosan. Chitosan may be useful in recovery of renal function from $HgCl_2$injury.

Synthesis and Drug-Releasing Behavior of Various Polymeric Prodrugs of PGE1 with PEG and Its Derivative as Polymer Carriers

  • Lee, Chan-Woo
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.4
    • /
    • pp.484-493
    • /
    • 2007
  • Two polymeric prodrugs of PGE1 (prodrugs IVg and PNg) were newly synthesized. The drug conjugation proceeded in quantitative yield without decomposition of PGE1 to PGA1. With two types conjugates, PEG-PGE1 and PN-PGE1 with different spacer groups, we first discovered a possibility of slow release of PGE1 in blood circulatory system. PGE1 is conjugated with PEG and PN through the long alkylene spacers, and their availability as polymeric prodrugs is evaluated. Their drug-releasing behavior was examined both in phosphate buffer (pH=7.4) and rat plasma. Each prodrug was known to be highly stabile in the buffer solution. The drug-releasing rate became much faster in rat plasma than in the buffer solution due to the acceleration by the plasma enzymes. The drug-release was found to reach a plateau in rat plasma because the released PGE1 or its derivatives may be captured or decomposed by the plasma proteins. The slower drug-releasing rate of pro drug PNg in rat plasma is reasonably attributed to the molecular aggregation due to the hydrophobic bonding between the PGE1 moieties and spacers.

Preparation of Polycaprolactone Microcapsules by Membrane Emulsification Method and Its Drug Release Properties (막유화법에 의한 생분해성 Polycaprolactone 마이크로캡슐의 제조와 약물방출 특성)

  • Youm, Kyung-Ho;Yun, Tae-Ho;Kim, Kong-Soo;Cho, Suh-Hyeong
    • Membrane Journal
    • /
    • v.17 no.1
    • /
    • pp.67-79
    • /
    • 2007
  • Uniform microcapsules containing ionic model drugs were prepared by controlling various conditions of emulsification procedure using a lab-scale membrane emulsification system with a SPG (Shirasu porous glass) tubular membrane. We observed the effects of various emulsification parameters [concentration and molecular weight of polycaprolatone (PCL) polymer, transmembrane pressure and emulsifier concentration in disperse phase and continuous phase, stirring speed] on the mean size and size ditribution of microcapsules containing lidocaine hydrochloride (cationic drug), sodium salicylate (nonionic drug) and 4-acetaminophen (anionic drug) used as a model drugs. Also, release characteristics of a model drugs from PCL microcapsules were investigated. Controlling membrane emulsification parameters, uniform PCL microcapsules with about $5\;{\mu}m$ of the mean size were finally prepared. The release rate and the burst effect of microcapsules were decreased in condition of the acidic solution, but it was increased in condition of the base solution.

Release of Cytarabine from $Poly({\varepsilon}-carbobenzoxy\;L-lysine)$/Poly(ethylene oxide)/Poly({\varepsilon}-carbobenzoxy\;L-lysine)$ Block Copolymer Microspheres ($Poly({\varepsilon}-carbobenzoxy\;L-lysine)$/Poly(ethylene oxide)/$Poly({\varepsilon}-carbobenzoxy\;L-lysine)$ 블록 공중합체 미립자에서 Cytarabine의 방출특성)

  • Cho, Chong-Su;Kwon, Joong-Kuen;Jo, Byung-Wook;Lee, Kang-Choon;Sung, Yong-Kiel
    • Journal of Pharmaceutical Investigation
    • /
    • v.22 no.4
    • /
    • pp.323-326
    • /
    • 1992
  • $Poly({\varepsilon}-carbobenzoxy\;L-lysine)/poly(ethylene oxide)/poly({\varepsilon}-carbobenzoxy\;L-lysine)$ (LEL) block copolymers containing $poly({\varepsilon}-carbobenzoxy\;L-lysine)$ (PCLL) as the A component and poly(ethylene oxide) (PEO) as the B component were investigated as drug delivery matrix. PCLL homopolymer and LEL block copolymer microspheres containing anticancer drug, cytarabine, were prepared by a solvent evaporation process and the release patterns of cytarabine from the microspheres were investigated in vitro. The size of PCLL homopolymer and LEL block copolymer microspheres was ranged from $0.2\;{\mu}m$ to $1\;{\mu}m$ in diameter and the shape of the microspheres was almost round. The release pattern of cytarabine from the block copolymer microspheres was dependent on the mole % of PEO of the block copolymers.

  • PDF

Development of Poly(D,L-lactic acid) Microspheres Containing Lorazepam (로라제팜을 함유한 poly(D,L-lactic acid) 마이크로스피어 개발)

  • Choi, Han-Gon;Yoo, Bong-Kyu;Rhee, Jong-Dal;Kim, Jung-Ae;Kwon, Tae-Hyub;Woo, Jong-Soo;Yong, Chul-Soon
    • Journal of Pharmaceutical Investigation
    • /
    • v.36 no.3
    • /
    • pp.175-184
    • /
    • 2006
  • Poly(D,L-lacic acid)(PLA) microshperes containing loazepam were prepared by a solvent-emulsion evaporation method and their release patterns were investigated in vitro. Various batches of microspheres with different size and drug content were obtained by changing the ratio of lorazepam to PLA, PLA concentration in the dispersed phase and stirring rate. Rod-like lorazepam crystals on microsphere surface, which were released rapidly and could act as a loading dose, were observed with increasing drug content. The release rate was increased with increase in drug contents and decrease in the molecular weight of PLA. The release rate of lorazepam for long-acting injectable delivery system in vitro, which would aid in Predicting in vivo release Profile, could be controlled by properly optimizing various factors affecting characteristics of microspheres.

Evaluation of In Vitro Release Profiles of Fentanyl-Loaded PLGA Oligomer Microspheres

  • Gilson Khang;Seo, Sun-Ah;Park, Hak-Soo;John M. Rhee;Lee, Hai-Bang
    • Macromolecular Research
    • /
    • v.10 no.5
    • /
    • pp.246-252
    • /
    • 2002
  • In order to the development of the delivery device of long-acting local anesthetics for postoperative analgesia and control of chronic pain of cancer patient, fentnyl-loaded poly (L-lactide-co-glycolido) (PLGA, molecular weight, 5,000 g/mole; 50 : 50 mole ratio by lactide to glycolide) microspheres (FMS) were studied. FMS were prepared by an emulsion solvent-evaporation method. The influence of several preparation parameters such as initial drug loading, PLGA concentration, emulsifier concentration, oil phase volume, and fabrication temperature has been investigated on the fentanyl release profiles. Generally, the drug showed the biphasic release patterns, with an initial diffusion followed by a lag period before the onset of the degradation phase, but there was no lag time in our system. Fentanyl was slowly released from FMS over 10 days in vitro with a quasi-zero order property. The release rate increased with increasing drug loading as well as decreasing polymer concentration with relatively small initial burst effect. From the results, FMS may be a good formulation to deliver the anesthetic for the treatment of chronic pain.

Polymer-Coated Liposomes for Oral Drug Delivery (I): Stability of Polysaccharide-Coated Liposomes Against Bile Salts (고분자 코팅을 이용한 경구용 리포좀의 개발(I): 다당체로 코팅된 리포좀의 담즙산염에 대한 안정성)

  • Choi, Young-Wook;Hahn, Yang-Hee
    • Journal of Pharmaceutical Investigation
    • /
    • v.22 no.3
    • /
    • pp.211-217
    • /
    • 1992
  • Stabilization of liposomes against degradation by bile salts has been investigated in order to develop a liposomal model system for oral drug delivery. Two polysaccharides, amylopectin (AP) and chitin (CT), were employed to coat both empty liposomes and bromthymol blue (BTB)-encapsulated liposomes by adsorption-coating techniques. Turbidity changes and BTB-release characteristics in pH 5.6 buffer solutions with or without bile salts, sodium cholate and sodium glycocholate, were observed to compare the differences between uncoated liposomes and polysaccharide-coated liposomes. Initial turbidities of both uncoated and polysaccharide-coated liposomes in buffer solution were kept constant within 3% range during 4 hours of experiments. But they were decreased in a different manner in bile salts-containing buffer solutions, showing 10% or less decrease for polysaccharide-coated liposomes and 25% or more decrease for uncoated liposomes. BTB release from uncoated liposomes has been greatly increased upto 90% after 4 hours in bile salts-containing buffer solution, which is a clue for breakdown of liposomal vesicles. However, polysaccharide-coated liposomes showed the controlled-release pattern which is proportional to square-root of time, followed by around 50% release for the same time period. Consequently, it is possible to conclude that these polysaccharide-coated liposomes might be an available system for oral delivery of a drug which is unstable in gut environment.

  • PDF