• Title/Summary/Keyword: drug-likeness

Search Result 21, Processing Time 0.023 seconds

Drug-likeness and Oral bioavailability for Chemical Compounds of Medicinal Materials Constituting Oryeong-san (오령산 구성약재 성분의 Drug-likeness와 Oral bioavailability)

  • Kim, Sang-Kyun;Lee, Seungho
    • The Korea Journal of Herbology
    • /
    • v.33 no.5
    • /
    • pp.19-37
    • /
    • 2018
  • Objectives : Oryeong-san was composed of Alismatis Rhizoma, Atractylodis Rhizoma Alba, Poria Sclerotium, Polyporus, Cinnamomi Cortex, and known to have hundreds of chemical compounds. The aim of this study was to screen chemical compounds constituting Oryeong-san with the drug-likeness and oral bioavailability from the analysis of their physicochemical properties. Methods : A list of chemical compounds of Oryeong-san was obtained from TM-MC(database of medicinal materials and chemical compounds in Northeast Asian traditional medicine). To remove redundant compounds, the SMILES (Simplified Molecular Input Line Entry System) strings of each compound were identified. All of the physicochemical properties for the compounds were calculated using the DruLiTo(Drug Likeness Tool). Drug-likeness was estimated by QED(Quantitative Estimate of Druglikeness) and OB(Oral bioavailability) was checked based on the Veber's rules. Results : A total of 475 compounds were obtained by eliminating duplication among 544 compounds of 5 medicinal materials. Analysis of the physicochemical properties revealed that the most common values were MW(molecular weight) 200~300 g/mol, ALOGP(octanol-water partition coefficient) 1~2, HBA(number of hydrogen bond acceptors) 0~1, HBD(number of hydrogen bond donors) 0, PSA(polar surface area) 0~50 angstrom, ROTB(number of rotatable bonds) 1, AROM(number of aromatic rings) 0, and ALERT(number of structural alerts) 1. QED had 93% of the values between 0.2 and 0.7, and OB had 90% of the value of TRUE. Conclusions : We in this paper screened the candidate active compounds of Oryeong-san using the QED and Veber's rules. In the future, we will use the screening results to analyze the mechanism of Oryeong-san based on systems pharmacology.

In-silico Studies of Boerhavia diffusa (Purnarnava) Phytoconstituents as ACE II Inhibitor: Strategies to Combat COVID-19 and Associated Diseases

  • Rahul Maurya;Thirupataiah Boini;Lakshminarayana Misro;Thulasi Radhakrishnan
    • Natural Product Sciences
    • /
    • v.29 no.2
    • /
    • pp.104-112
    • /
    • 2023
  • COVID-19 caused a catastrophe in human health. People infected with COVID-19 also suffer from various clinical illnesses during and after the infection. The Boerhavia diffusa plant is well known for its antihypertensive activity. ACE-II inhibitors and calcium channel blockers are reported as mechanisms for the antihypertensive activity of B. diffusa phytoconstituents. Various studies have said ACE-II is the virus's binding site to attack host cells. COVID-19 treatment commonly employs a variety of synthetic antiviral and steroidal drugs. As a result, other clinical illnesses, such as hypertension and hyperglycemia, emerge as serious complications. Safe and effective drug delivery is a prime objective of the drug development process. COVID-19 is treated with various herbal treatments; however, they are not widely used due to their low potency. Many herbal plants and formulations are used to treat COVID-19 infection, in which B. diffusa is the most widely used plant. The current study relies on discovering active phytoconstituents with ACE-II inhibitory activity in the B. diffusa plant. As a result, it can be used as a treatment option for patients with COVID-19 and related diseases. Different phytoconstituents of the B. diffusa plant were selected from the reported literature. The activity of phytoconstituents against ACE-II proteins has been studied. Molecular docking and ligand-protein interaction computation tools are used in the in-silico experiment. Physicochemical, drug-likeness, water solubility, lipophilicity, and pharmacokinetic parameters are used to evaluate phytoconstituents. Liriodenine has the best drug-likeness, bioactivity, and binding score characteristics among the selected ligands. The in-silico study aims to find the therapeutic potential of B. diffusa phytoconstituents against ACE-II. Targeting ACE-II also shows an effect against SARS-CoV-2. It can serve as a rationale for designing a drug for patient infected with COVID-19 and associated diseases.

Property-based Design of Ion-Channel-Targeted Library

  • Ahn, Ji-Young;Nam, Ky-Youb;Chang, Byung-Ha;Yoon, Jeong-Hyeok;Cho, Seung-Joo;Koh, Hun-Yeong;No, Kyoung-Tai
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.134-138
    • /
    • 2005
  • The design of ion channel targeted library is a valuable methodology that can aid in the selection and prioritization of potential ion channel-likeness for ion-channel-targeted bio-screening from large commercial available chemical pool. The differences of property profiling between the 93 ion-channel active compounds from MDDR and CMC database and the ACDSC compounds were classified by suitable descriptors calculated with preADME software. Through the PCA, clustering, and similarity analysis, the compounds capable of ion channel activity were defined in ACDSC compounds pool. The designed library showed a tendency to follow the property profile of ion-channel active compounds and can be implemented with great time and economical efficiencies of ligand-based drug design or virtual high throughput screening from an enormous small molecule space.

  • PDF

In Silico Docking Studies of Selected Flavonoids - Natural Healing Agents against Breast Cancer

  • Suganya, Jeyabaskar;Radha, Mahendran;Naorem, Devi Leimarembi;Nishandhini, Marimuthu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.19
    • /
    • pp.8155-8159
    • /
    • 2014
  • Background: Breast cancer is the serious health concern in India causing the highest mortality rate in females, which occurs due to uncontrolled cell division and can be metastasize to other parts of the human body. Interactions with estrogen receptor (ER) alpha are mainly responsible for the malignant tumors with regulation of the transcription of various genes as a transcription factor. Most of the drugs currently used for the breast cancer treatment produce various side effects and hence we focused on natural compounds which do not exhibit any toxic effect against normal human cells. Materials and Methods: Structure of human ER was retrieved from the Protein Data Bank and the structures of flavonoid compounds have been collected from PubChem database. Molecular docking and drug likeness studies were performed for those natural compounds to evaluate and analyze the anti-breast cancer activity. Results: Finally two compounds satisfying the Lipinski's rule of five were reported. The two compounds also exhibited highest binding affinity with human ER greater than 10.5 Kcal/mol. Conclusions: The results of this study can be implemented in the drug designing pipeline.

A Dietary Treatment for Diabetes Mellitus in Chinese Medicine (한의학(韓醫學)에 있어서 소갈증(消渴症)(당뇨병(糖尿病))에 대한 식이요법(食餌療法)의 고찰(考察))

  • Hwang, Ho-Kwan
    • Journal of the Korean Society of Food Culture
    • /
    • v.1 no.4
    • /
    • pp.311-320
    • /
    • 1986
  • A dietary treatment of Chinese medicine for diabetes mellitus was extensively studied and compared with that of western medicine. The main results are as follows: Chinese medicine is based on the following empirical dietetics. First, likeness helps likeness. When an internal organ of mankind is not functioning properly, the food or drug from the same organ of an animal will be helpful to cure it. Second, take good foods for health properly and never take any foods against body. Third, building up one's body by taking tonics is not quite the same as building up one's body through proper eating. On the other hand, western medicine is based on the experimental and scientific methods which are modernized in accordance with the development of science and technology. It emphasizes upon finding the cause of a disease. Then this disease can be cured by doing a necessary medical treatment which sometime uses a surgical operation or chemical and radiological method or both. Although there are many ways in treating a diabetic in Western Medicine, here the diabetics is supposed to be the best. The same is true for Chinese Medicine. Therefore one can easily conclude that the dietetics is the most important and effective of all irrespective of Western and Chinese Medicine as far as diabetesis concerned. In Western Medicine, a diabetic is recommened to have the minimum calories necessary for life and not to have goods containing glucide beyond a certain quantity, while in Chinese medicine a diabetic is not allowed to have foods containing more than 10% of glucide. These two facts suggest that a diabetic should pay careful attention to foods containing lots of glucide. Finally a systematic cooperation between western and Chinese medicine will cure not only diabetes but also other disease more effectively than a traditionally unilateral method.

  • PDF

Flavonoids as Novel Therapeutic Agents Against Chikungunya Virus Capsid Protein: A Molecular Docking Approach

  • E. Vadivel;Gundeep Ekka;J. Fermin Angelo Selvin
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.4
    • /
    • pp.226-235
    • /
    • 2023
  • Chikungunya fever has a high morbidity rate in humans and is caused by chikungunya virus. There are no treatments available until now for this particular viral disease. The present study was carried out by selecting 19 flavonoids, which are available naturally in fruits, vegetables, tea, red wine and medicinal plants. The molecular docking of selected 19 flavonoids was carried out against the Chikungunya virus capsid protein using the Autodock4.2 software. Binding affinity analysis based on the Intermolecular interactions such as Hydrogen bonding and hydrophobic interactions and drug-likeness properties for all the 19 flavonoids have been carried out and it is found that the top four molecules are Chrysin, Fisetin, Naringenin and Biochanin A as they fit to the chikungunya protein and have binding energy of -8.09, -8.01, -7.6, and 7.3 kcal/mol respectively. This result opens up the possibility of applying these compounds in the inhibition of chikungunya viral protein.

In silico investigation of Panax ginseng lead compounds against COVID-19 associated platelet activation and thromboembolism

  • Yixian Quah;Yuan Yee Lee;Seung-Jin Lee;Sung Dae Kim;Man Hee Rhee;Seung-Chun Park
    • Journal of Ginseng Research
    • /
    • v.47 no.2
    • /
    • pp.283-290
    • /
    • 2023
  • Hypercoagulability is frequently observed in patients with severe coronavirus disease-2019 (COVID-19). Platelets are a favorable target for effectively treating hypercoagulability in COVID-19 patients as platelet hyperactivity has also been observed. It is difficult to develop a treatment for COVID-19 that will be effective against all variants and the use of antivirals may not be fully effective against COVID-19 as activated platelets have been detected in patients with COVID-19. Therefore, patients with less severe side effects often turn toward natural remedies. Numerous phytochemicals are being investigated for their potential to treat a variety of illnesses, including cancer and bacterial and viral infections. Natural products have been used to alleviate COVID-19 symptoms. Panax ginseng has potential for managing cardiovascular diseases and could be a treatment for COVID-19 by targeting the coagulation cascade and platelet activation. Using molecular docking, we analyzed the interactions of bioactive chemicals in P. ginseng with important proteins and receptors involved in platelet activation. Furthermore, the SwissADME online tool was used to calculate the pharmacokinetics and drug-likeness properties of the lead compounds of P. ginseng. Dianthramine, deoxyharrtingtonine, and suchilactone were determined to have favorable pharmacokinetic profiles.

Novel DOT1L ReceptorNatural Inhibitors Involved in Mixed Lineage Leukemia: a Virtual Screening, Molecular Docking and Dynamics Simulation Study

  • Raj, Utkarsh;Kumar, Himansu;Gupta, Saurabh;Varadwaj, Pritish Kumar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.9
    • /
    • pp.3817-3825
    • /
    • 2015
  • Background: The human protein methyl-transferase DOT1L catalyzes the methylation of histone H3 on lysine 79 (H3K79) at homeobox genes and is also involved in a number of significant processes ranging from gene expression to DNA-damage response and cell cycle progression. Inhibition of DOT1L activity by shRNA or small-molecule inhibitors has been established to prevent proliferation of various MLL-rearranged leukemia cells in vitro, establishing DOT1L an attractive therapeutic target for mixed lineage leukemia (MLL). Most of the drugs currently in use for the MLL treatment are reported to have low efficacy, hence this study focused on various natural compounds which exhibit minimal toxic effects and high efficacy for the target receptor. Materials and Methods: Structures of human protein methyl-transferase DOT1L and natural compound databases were downloaded from various sources. Virtual screening, molecular docking, dynamics simulation and drug likeness studies were performed for those natural compounds to evaluate and analyze their anti-cancer activity. Results: The top five screened compounds possessing good binding affinity were identified as potential high affinity inhibitors against DOT1L's active site. The top ranking molecule amongst the screened ligands had a Glide g-score of -10.940 kcal/mol and Glide e-model score of -86.011 with 5 hydrogen bonds and 12 hydrophobic contacts. This ligand's behaviour also showed consistency during the simulation of protein-ligand complex for 20000 ps, which is indicative of its stability in the receptor pocket. Conclusions: The ligand obtained out of this screening study can be considered as a potential inhibitor for DOT1L and further can be treated as a lead for the drug designing pipeline.

Small Molecule Inhibitors of Middle East Respiratory Syndrome Coronavirus Fusion by Targeting Cavities on Heptad Repeat Trimers

  • Kandeel, Mahmoud;Yamamoto, Mizuki;Al-Taher, Abdulla;Watanabe, Aya;Oh-hashi, Kentaro;Park, Byoung Kwon;Kwon, Hyung-Joo;Inoue, Jun-ichiro;Al-Nazawi, Mohammed
    • Biomolecules & Therapeutics
    • /
    • v.28 no.4
    • /
    • pp.311-319
    • /
    • 2020
  • Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is a newly emerging viral disease with fatal outcomes. However, no MERS-CoV-specific treatment is commercially available. Given the absence of previous structure-based drug discovery studies targeting MERS-CoV fusion proteins, this set of compounds is considered the first generation of MERS-CoV small molecule fusion inhibitors. After a virtual screening campaign of 1.56 million compounds followed by cell-cell fusion assay and MERS-CoV plaques inhibition assay, three new compounds were identified. Compound numbers 22, 73, and 74 showed IC50 values of 12.6, 21.8, and 11.12 µM, respectively, and were most effective at the onset of spike-receptor interactions. The compounds exhibited safe profiles against Human embryonic kidney cells 293 at a concentration of 20 µM with no observed toxicity in Vero cells at 10 µM. The experimental results are accompanied with predicted favorable pharmacokinetic descriptors and drug-likeness parameters. In conclusion, this study provides the first generation of MERS-CoV fusion inhibitors with potencies in the low micromolar range.

Screening of novel alkaloid inhibitors for vascular endothelial growth factor in cancer cells: an integrated computational approach

  • Shahik, Shah Md.;Salauddin, Asma;Hossain, Md. Shakhawat;Noyon, Sajjad Hossain;Moin, Abu Tayab;Mizan, Shagufta;Raza, Md. Thosif
    • Genomics & Informatics
    • /
    • v.19 no.1
    • /
    • pp.6.1-6.10
    • /
    • 2021
  • Vascular endothelial growth factor (VEGF) is expressed at elevated levels by most cancer cells, which can stimulate vascular endothelial cell growth, survival, proliferation as well as trigger angiogenesis modulated by VEGF and VEGFR (a tyrosine kinase receptor) signaling. The angiogenic effects of the VEGF family are thought to be primarily mediated through the interaction of VEGF with VEGFR-2. Targeting this signaling molecule and its receptor is a novel approach for blocking angiogenesis. In recent years virtual high throughput screening has emerged as a widely accepted powerful technique in the identification of novel and diverse leads. The high resolution X-ray structure of VEGF has paved the way to introduce new small molecular inhibitors by structure-based virtual screening. In this study using different alkaloid molecules as potential novel inhibitors of VEGF, we proposed three alkaloid candidates for inhibiting VEGF and VEGFR mediated angiogenesis. As these three alkaloid compounds exhibited high scoring functions, which also highlights their high binding ability, it is evident that these alkaloids can be taken to further drug development pipelines for use as novel lead compounds to design new and effective drugs against cancer.