• Title/Summary/Keyword: drug-gene network

Search Result 55, Processing Time 0.022 seconds

NGSEA: Network-Based Gene Set Enrichment Analysis for Interpreting Gene Expression Phenotypes with Functional Gene Sets

  • Han, Heonjong;Lee, Sangyoung;Lee, Insuk
    • Molecules and Cells
    • /
    • v.42 no.8
    • /
    • pp.579-588
    • /
    • 2019
  • Gene set enrichment analysis (GSEA) is a popular tool to identify underlying biological processes in clinical samples using their gene expression phenotypes. GSEA measures the enrichment of annotated gene sets that represent biological processes for differentially expressed genes (DEGs) in clinical samples. GSEA may be suboptimal for functional gene sets; however, because DEGs from the expression dataset may not be functional genes per se but dysregulated genes perturbed by bona fide functional genes. To overcome this shortcoming, we developed network-based GSEA (NGSEA), which measures the enrichment score of functional gene sets using the expression difference of not only individual genes but also their neighbors in the functional network. We found that NGSEA outperformed GSEA in identifying pathway gene sets for matched gene expression phenotypes. We also observed that NGSEA substantially improved the ability to retrieve known anti-cancer drugs from patient-derived gene expression data using drug-target gene sets compared with another method, Connectivity Map. We also repurposed FDA-approved drugs using NGSEA and experimentally validated budesonide as a chemical with anti-cancer effects for colorectal cancer. We, therefore, expect that NGSEA will facilitate both pathway interpretation of gene expression phenotypes and anti-cancer drug repositioning. NGSEA is freely available at www.inetbio.org/ngsea.

Identification of novel potential drugs and miRNAs biomarkers in lung cancer based on gene co-expression network analysis

  • Sara Hajipour;Sayed Mostafa Hosseini;Shiva Irani;Mahmood Tavallaie
    • Genomics & Informatics
    • /
    • v.21 no.3
    • /
    • pp.38.1-38.8
    • /
    • 2023
  • Non-small cell lung cancer (NSCLC) is an important cause of cancer-associated deaths worldwide. Therefore, the exact molecular mechanisms of NSCLC are unidentified. The present investigation aims to identify the miRNAs with predictive value in NSCLC. The two datasets were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed miRNAs (DEmiRNA) and mRNAs (DEmRNA) were selected from the normalized data. Next, miRNA-mRNA interactions were determined. Then, co-expression network analysis was completed using the WGCNA package in R software. The co-expression network between DEmiRNAs and DEmRNAs was calculated to prioritize the miRNAs. Next, the enrichment analysis was performed for DEmiRNA and DEmRNA. Finally, the drug-gene interaction network was constructed by importing the gene list to dgidb database. A total of 3,033 differentially expressed genes and 58 DEmiRNA were recognized from two datasets. The co-expression network analysis was utilized to build a gene co- expression network. Next, four modules were selected based on the Zsummary score. In the next step, a bipartite miRNA-gene network was constructed and hub miRNAs (let-7a-2-3p, let-7d-5p, let-7b-5p, let-7a-5p, and let-7b-3p) were selected. Finally, a drug-gene network was constructed while SUNITINIB, MEDROXYPROGESTERONE ACETATE, DOFETILIDE, HALOPERIDOL, and CALCITRIOL drugs were recognized as a beneficial drug in NSCLC. The hub miRNAs and repurposed drugs may act a vital role in NSCLC progression and treatment, respectively; however, these results must validate in further clinical and experimental assessments.

Identifying literature-based significant genes and discovering novel drug indications on PPI network

  • Park, Minseok;Jang, Giup;Lee, Taekeon;Yoon, Youngmi
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.3
    • /
    • pp.131-138
    • /
    • 2017
  • New drug development is time-consuming and costly. Hence, it is necessary to repurpose old drugs for finding new indication. We suggest the way that repurposing old drug using massive literature data and biological network. We supposed a disease-drug relationship can be available if signal pathways of the relationship include significant genes identified in literature data. This research is composed of three steps-identifying significant gene using co-occurrence in literature; analyzing the shortest path on biological network; and scoring a relationship with comparison between the significant genes and the shortest paths. Based on literatures, we identify significant genes based on the co-occurrence frequency between a gene and disease. With the network that include weight as possibility of interaction between genes, we use shortest paths on the network as signal pathways. We perform comparing genes that identified as significant gene and included on signal pathways, calculating the scores and then identifying the candidate drugs. With this processes, we show the drugs having new possibility of drug repurposing and the use of our method as the new method of drug repurposing.

Gene Expression Signatures for Compound Response in Cancers

  • He, Ningning;Yoon, Suk-Joon
    • Genomics & Informatics
    • /
    • v.9 no.4
    • /
    • pp.173-180
    • /
    • 2011
  • Recent trends in generating multiple, large-scale datasets provide new challenges to manipulating the relationship of different types of components, such as gene expression and drug response data. Integrative analysis of compound response and gene expression datasets generates an opportunity to capture the possible mechanism of compounds by using signature genes on diverse types of cancer cell lines. Here, we integrated datasets of compound response and gene expression profiles on NCI60 cell lines and constructed a network, revealing the relationship for 801 compounds and 341 gene probes. As examples, obtusol, which shows an exclusive sensitivity on a small number of colon cell lines, is related to a set of gene probes that have unique overexpression in colon cell lines. We also found that the SLC7A11 gene, a direct target of miR-26b, might be a key element in understanding the action of many diverse classes of anticancer compounds. We demonstrated that this network might be useful for studying the mechanisms of varied compound response on diverse cancer cell lines.

Reverse Engineering of a Gene Regulatory Network from Time-Series Data Using Mutual Information

  • Barman, Shohag;Kwon, Yung-Keun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.11a
    • /
    • pp.849-852
    • /
    • 2014
  • Reverse engineering of gene regulatory network is a challenging task in computational biology. To detect a regulatory relationship among genes from time series data is called reverse engineering. Reverse engineering helps to discover the architecture of the underlying gene regulatory network. Besides, it insights into the disease process, biological process and drug discovery. There are many statistical approaches available for reverse engineering of gene regulatory network. In our paper, we propose pairwise mutual information for the reverse engineering of a gene regulatory network from time series data. Firstly, we create random boolean networks by the well-known $Erd{\ddot{o}}s-R{\acute{e}}nyi$ model. Secondly, we generate artificial time series data from that network. Then, we calculate pairwise mutual information for predicting the network. We implement of our system on java platform. To visualize the random boolean network graphically we use cytoscape plugins 2.8.0.

Novel potential drugs for the treatment of primary open-angle glaucoma using protein-protein interaction network analysis

  • Parisima Ghaffarian Zavarzadeh;Zahra Abedi
    • Genomics & Informatics
    • /
    • v.21 no.1
    • /
    • pp.6.1-6.8
    • /
    • 2023
  • Glaucoma is the second leading cause of irreversible blindness, and primary open-angle glaucoma (POAG) is the most common type. Due to inadequate diagnosis, treatment is often not administered until symptoms occur. Hence, approaches enabling earlier prediction or diagnosis of POAG are necessary. We aimed to identify novel drugs for glaucoma through bioinformatics and network analysis. Data from 36 samples, obtained from the trabecular meshwork of healthy individuals and patients with POAG, were acquired from a dataset. Next, differentially expressed genes (DEGs) were identified to construct a protein-protein interaction (PPI) network. In both stages, the genes were enriched by studying the critical biological processes and pathways related to POAG. Finally, a drug-gene network was constructed, and novel drugs for POAG treatment were proposed. Genes with p < 0.01 and |log fold change| > 0.3 (1,350 genes) were considered DEGs and utilized to construct a PPI network. Enrichment analysis yielded several key pathways that were upregulated or downregulated. For example, extracellular matrix organization, the immune system, neutrophil degranulation, and cytokine signaling were upregulated among immune pathways, while signal transduction, the immune system, extracellular matrix organization, and receptor tyrosine kinase signaling were downregulated. Finally, novel drugs including metformin hydrochloride, ixazomib citrate, and cisplatin warrant further analysis of their potential roles in POAG treatment. The candidate drugs identified in this computational analysis require in vitro and in vivo validation to confirm their effectiveness in POAG treatment. This may pave the way for understanding life-threatening disorders such as cancer.

Feature Selection with Ensemble Learning for Prostate Cancer Prediction from Gene Expression

  • Abass, Yusuf Aleshinloye;Adeshina, Steve A.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12spc
    • /
    • pp.526-538
    • /
    • 2021
  • Machine and deep learning-based models are emerging techniques that are being used to address prediction problems in biomedical data analysis. DNA sequence prediction is a critical problem that has attracted a great deal of attention in the biomedical domain. Machine and deep learning-based models have been shown to provide more accurate results when compared to conventional regression-based models. The prediction of the gene sequence that leads to cancerous diseases, such as prostate cancer, is crucial. Identifying the most important features in a gene sequence is a challenging task. Extracting the components of the gene sequence that can provide an insight into the types of mutation in the gene is of great importance as it will lead to effective drug design and the promotion of the new concept of personalised medicine. In this work, we extracted the exons in the prostate gene sequences that were used in the experiment. We built a Deep Neural Network (DNN) and Bi-directional Long-Short Term Memory (Bi-LSTM) model using a k-mer encoding for the DNA sequence and one-hot encoding for the class label. The models were evaluated using different classification metrics. Our experimental results show that DNN model prediction offers a training accuracy of 99 percent and validation accuracy of 96 percent. The bi-LSTM model also has a training accuracy of 95 percent and validation accuracy of 91 percent.

Cancer Patient Specific Driver Gene Identification by Personalized Gene Network and PageRank (개인별 유전자 네트워크 구축 및 페이지랭크를 이용한 환자 특이적 암 유발 유전자 탐색 방법)

  • Jung, Hee Won;Park, Ji Woo;Ahn, Jae Gyoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.12
    • /
    • pp.547-554
    • /
    • 2021
  • Cancer patients can have different kinds of cancer driver genes, and identification of these patient-specific cancer driver genes is an important step in the development of personalized cancer treatment and drug development. Several bioinformatic methods have been proposed for this purpose, but there is room for improvement in terms of accuracy. In this paper, we propose NPD (Network based Patient-specific Driver gene identification) for identifying patient-specific cancer driver genes. NPD consists of three steps, constructing a patient-specific gene network, applying the modified PageRank algorithm to assign scores to genes, and identifying cancer driver genes through a score comparison method. We applied NPD on six cancer types of TCGA data, and found that NPD showed generally higher F1 score compared to existing patient-specific cancer driver gene identification methods.

Semantic Modeling for SNPs Associated with Ethnic Disparities in HapMap Samples

  • Kim, HyoYoung;Yoo, Won Gi;Park, Junhyung;Kim, Heebal;Kang, Byeong-Chul
    • Genomics & Informatics
    • /
    • v.12 no.1
    • /
    • pp.35-41
    • /
    • 2014
  • Single-nucleotide polymorphisms (SNPs) have been emerging out of the efforts to research human diseases and ethnic disparities. A semantic network is needed for in-depth understanding of the impacts of SNPs, because phenotypes are modulated by complex networks, including biochemical and physiological pathways. We identified ethnicity-specific SNPs by eliminating overlapped SNPs from HapMap samples, and the ethnicity-specific SNPs were mapped to the UCSC RefGene lists. Ethnicity-specific genes were identified as follows: 22 genes in the USA (CEU) individuals, 25 genes in the Japanese (JPT) individuals, and 332 genes in the African (YRI) individuals. To analyze the biologically functional implications for ethnicity-specific SNPs, we focused on constructing a semantic network model. Entities for the network represented by "Gene," "Pathway," "Disease," "Chemical," "Drug," "ClinicalTrials," "SNP," and relationships between entity-entity were obtained through curation. Our semantic modeling for ethnicity-specific SNPs showed interesting results in the three categories, including three diseases ("AIDS-associated nephropathy," "Hypertension," and "Pelvic infection"), one drug ("Methylphenidate"), and five pathways ("Hemostasis," "Systemic lupus erythematosus," "Prostate cancer," "Hepatitis C virus," and "Rheumatoid arthritis"). We found ethnicity-specific genes using the semantic modeling, and the majority of our findings was consistent with the previous studies - that an understanding of genetic variability explained ethnicity-specific disparities.

Deep Learning Approach Based on Transcriptome Profile for Data Driven Drug Discovery

  • Eun-Ji Kwon;Hyuk-Jin Cha
    • Molecules and Cells
    • /
    • v.46 no.1
    • /
    • pp.65-67
    • /
    • 2023
  • SMILES (simplified molecular-input line-entry system) information of small molecules parsed by one-hot array is passed to a convolutional neural network called black box. Outputs data representing a gene signature is then matched to the genetic signature of a disease to predict the appropriate small molecule. Efficacy of the predicted small molecules is examined by in vivo animal models. GSEA, gene set enrichment analysis.