• 제목/요약/키워드: drug-drug interactions

검색결과 354건 처리시간 0.023초

Identification of Selective STAT1 Inhibitors by Computational Approach

  • Veena Jaganivasan;Dona Samuel Karen;Bavya Chandrasekhar
    • 통합자연과학논문집
    • /
    • 제16권3호
    • /
    • pp.81-95
    • /
    • 2023
  • Colorectal cancer is one of the most common types of cancer worldwide, ranking third after lung and breast cancer in terms of global prevalence. With an expected 1.93 million new cases and 935,000 deaths in 2020, it is more prevalent in males than in women. Evidence has shown that during the later stages of colon cancer, STAT1 promotes tumor progression by promoting cell survival and resistance to chemotherapy. Recent studies have shown that inhibiting STAT1 pathway leads to a reduction in tumor cell proliferation and growth, and can also promote apoptosis in colon cancer cells. One of the recent approaches in the field of drug discovery is drug repurposing. In drug repurposing approach we have virtually screened FDA database against STAT1 protein and their interactions have been studied through Molecular docking. Cross docking was performed with the top 10 compounds to be more specific with STAT1 comparing the affinity with STAT2, STAT3, STAT4, STAT5a, STAT5b and STAT6. The drugs that showed higher affinity were subjected to Conceptual - Density functional theory. Besides, the Molecular dynamic simulation was also carried out for the selected leads. We also validated in-vitro against colon cancer cell lines. The results showed mainly Acetyldigitoxin has shown better binding to the target. From this study, we can predict that the drug Acetyldigitoxin has shown noticeable inhibitory efficiency against STAT1, which in turn can also lead to the reduction of tumor cell growth in colon cancer.

주의력결핍 과잉행동장애 아동과 아스퍼거장애 아동에서 사회기술훈련의 효과 비교 (The Effect of Social Skills Training for Children with Attention-Deficit Hyperactivity Disorder and Asperger's Disorder : Preliminary Study)

  • 황지희;곽영숙
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • 제24권4호
    • /
    • pp.199-206
    • /
    • 2013
  • Objectives : Attention-deficit hyperactivity disorder (ADHD) and Asperger's disorder (AD) in children are associated with attentional problems, impulsivity, hyperactivity, and difficulties with social interactions. Pharmacological treatment may alleviate symptoms of ADHD, but seldom solves difficulties with social interactions. Social skills training (SST) may assist in improving their social interactions. We examined the effects of SST on children's social competences, general behavior, and ADHD symptoms. Methods : Thirty four children, aged 7 to 12 years, participated in the cognitive behavioral SST program once a week at the outpatient division of child-adolescent psychiatry. SST was composed of 24 sessions (ninety minutes) for 6 months. Twenty-five children were diagnosed with ADHD, and 9 children were diagnosed with AD. Parents of the children rated Korea-Child Behavior Checklist (K-CBCL), Conner's rating scales, Korean-ADHD Rating Scale (K-ARS), Social Skill Rating System (SSRS), and Matson's Social Skill Rating Scale as an evaluation of the treatment effect, before the first session and after the final session of the training. Results : The ADHD group showed significantly increased scores of social and social competence of CBCL and SSRS. Further, scores of externalizing problems of CBCL, CRS, and ARS were significantly decreased. The Asperger's group showed significantly increased scores of social competence of CBCL, SSRS, and MESS. There was a significant difference of the improvement in CBCL's school and total behavior problem score, CRS between drug change group and no drug change group. Conclusion : The result of this study suggests that SST is effective in improving social skills for children with ADHD and AD. In addition, SST has shown its effectiveness in treating attentional problems for children with ADHD. To prove objective usefulness of SST, further studies with a more structured design and long-term duration along with a sufficient number of AD participants will be necessary.

Effect of Allium sativum on cytochrome P450 and possible drug interactions

  • Janil, Ashutosh;Mehta, Anita A
    • Advances in Traditional Medicine
    • /
    • 제6권4호
    • /
    • pp.274-285
    • /
    • 2006
  • Allium sativum (Family Amaryllidaceae or Liliaceae) is used worldwide for various clinical uses like hypertension, cholesterol lowering effect, antiplatelets and fibrinolytic activity etc. Due to these common house hold uses of Allium sativum, as a herbal supplements, and failure of patients to inform their physician of the over-the-counter supplements they consume leads to drugnutrient interactions with components in herbal supplements. Today these types of interactions between a herbal supplement and clinically prescribed drugs are an increasing concern. In vitro studies indicated that garlic constituents modulated various CYP (cytochrome P450) enzymes. CYP 3A4 is abundantly present in human liver and small intestine and contributes to the metabolism of more than 50% of commonly used drugs including nifedipine, cyclosporine, erythromycin, midazolam, alprazolam, and triazolam. Extracts from fresh and aged garlic inhibited CYP 3A4 in human liver microsomes. The in vivo effects of garlic constituents are found to be species depended and the dosing regimen of garlic constituents appeared to influence the modulation of various CYP isoforms. Studies have indicated that the inhibition of various CYPs by organosulfur compounds from garlic was related to their structure also. Studies using in vitro, in vivo, animal and human models have indicated that various garlic constituents can be the substrates, inhibitors and or inducers of various CYP enzymes. The modulation of CYP enzyme activity and expression are dependent on the type and chemical structure of garlic constituents, dose regime, animal species and tissue, and source of garlic thus this review throws light on the possible herb drug interaction with the use of garlic.

Theoretical Characterization of Binding Mode of Organosilicon Inhibitor with p38: Docking, MD Simulation and MM/GBSA Free Energy Approach

  • Gadhe, Changdev G.;Balupuri, Anand;Kothandan, Gugan;Cho, Seung Joo
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권8호
    • /
    • pp.2494-2504
    • /
    • 2014
  • P38 mitogen activated protein (MAP) kinase is an important anti-inflammatory drug target, which can be activated by responding to various stimuli such as stress and immune response. Based on the conformation of the conserved DFG loop (in or out), binding inhibitors are termed as type-I and II. Type-I inhibitors are ATP competitive, whereas type-II inhibitors bind in DFG-out conformation of allosteric pocket. It remains unclear that how these allosteric inhibitors stabilize the DFG-out conformation and interact. Organosilicon compounds provide unusual opportunity to enhance potency and diversity of drug molecules due to their low toxicity. However, very few examples have been reported to utilize this property. In this regard, we performed docking of an inhibitor (BIRB) and its silicon analog (Si-BIRB) in an allosteric binding pocket of p38. Further, molecular dynamics (MD) simulations were performed to study the dynamic behavior of the simulated complexes. The difference in the biological activity and mechanism of action of the simulated inhibitors could be explained based on the molecular mechanics/generalized Born surface area (MM/GBSA) binding free energy per residue decomposition. MM/GBSA showed that biological activities were related with calculated binding free energy of inhibitors. Analyses of the per-residue decomposed energy indicated that van der Waals and non-polar interactions were predominant in the ligand-protein interactions. Further, crucial residues identified for hydrogen bond, salt bridge and hydrophobic interactions were Tyr35, Lys53, Glu71, Leu74, Leu75, Ile84, Met109, Leu167, Asp168 and Phe169. Our results indicate that stronger hydrophobic interaction of Si-BIRB with the binding site residues could be responsible for its greater binding affinity compared with BIRB.

Gypenoside XVII protects against myocardial ischemia and reperfusion injury by inhibiting ER stress-induced mitochondrial injury

  • Yu, Yingli;Wang, Min;Chen, Rongchang;Sun, Xiao;Sun, Guibo;Sun, Xiaobo
    • Journal of Ginseng Research
    • /
    • 제45권6호
    • /
    • pp.642-653
    • /
    • 2021
  • Background: Effective strategies are dramatically needed to prevent and improve the recovery from myocardial ischemia and reperfusion (I/R) injury. Direct interactions between the mitochondria and endoplasmic reticulum (ER) during heart diseases have been recently investigated. This study was designed to explore the cardioprotective effects of gypenoside XVII (GP-17) against I/R injury. The roles of ER stress, mitochondrial injury, and their crosstalk within I/R injury and in GP-17einduced cardioprotection are also explored. Methods: Cardiac contractility function was recorded in Langendorff-perfused rat hearts. The effects of GP-17 on mitochondrial function including mitochondrial permeability transition pore opening, reactive oxygen species production, and respiratory function were determined using fluorescence detection kits on mitochondria isolated from the rat hearts. H9c2 cardiomyocytes were used to explore the effects of GP-17 on hypoxia/reoxygenation. Results: We found that GP-17 inhibits myocardial apoptosis, reduces cardiac dysfunction, and improves contractile recovery in rat hearts. Our results also demonstrate that apoptosis induced by I/R is predominantly mediated by ER stress and associated with mitochondrial injury. Moreover, the cardioprotective effects of GP-17 are controlled by the PI3K/AKT and P38 signaling pathways. Conclusion: GP-17 inhibits I/R-induced mitochondrial injury by delaying the onset of ER stress through the PI3K/AKT and P38 signaling pathways.

Pharmacodynamic and pharmacokinetic interactions between herbs andwestern drugs

  • Lee, Ju-Young
    • Advances in Traditional Medicine
    • /
    • 제8권3호
    • /
    • pp.207-214
    • /
    • 2008
  • In recent years, the combined use of Herbal medicines and Western drugs has been increasing. Though certain problems may occur when both types of medicines are taken together, they havenot been adequately analyzed. It was reported that anticoagulation was enhanced in addition tobleeding when patients took long-term warfarin therapy in combination with Salvia miltiorrhiza(danshen), and laxative herbs accelerate intestinal transit and interfere with the absorption. Herbal constituents, curcumin, ginsenosides, piperine, catechins and silymarin were found to beinhibitors of P-glycoprotein. St John's wort induces the intestinal expression of P-glycoprotein. Anthraquinone, quercetin and coumarins were found to be a potent inhibitor of P-450. Glycyrrhizin or liquorice extracts, Garlic and St John's wort are a potent inducer of CYP3A4. This review provides a critical overview of interactions between herbal medicines and other drugs. Hence, it is necessary to study the pharmacodynamic and pharmacokinetic interactions of many herbal medicines between western drugs.

A protein interactions map of multiple organ systems associated with COVID-19 disease

  • Bharne, Dhammapal
    • Genomics & Informatics
    • /
    • 제19권2호
    • /
    • pp.14.1-14.6
    • /
    • 2021
  • Coronavirus disease 2019 (COVID-19) is an on-going pandemic disease infecting millions of people across the globe. Recent reports of reduction in antibody levels and the re-emergence of the disease in recovered patients necessitated the understanding of the pandemic at the core level. The cases of multiple organ failures emphasized the consideration of different organ systems while managing the disease. The present study employed RNA sequencing data to determine the disease associated differentially regulated genes and their related protein interactions in several organ systems. It signified the importance of early diagnosis and treatment of the disease. A map of protein interactions of multiple organ systems was built and uncovered CAV1 and CTNNB1 as the top degree nodes. A core interactions sub-network was analyzed to identify different modules of functional significance. AR, CTNNB1, CAV1, and PIK3R1 proteins were unfolded as bridging nodes interconnecting different modules for the information flow across several pathways. The present study also highlighted some of the druggable targets to analyze in drug re-purposing strategies against the COVID-19 pandemic. Therefore, the protein interactions map and the modular interactions of the differentially regulated genes in the multiple organ systems would incline the scientists and researchers to investigate in novel therapeutics for the COVID-19 pandemic expeditiously.

Understanding Drug-Protein Interactions in Escherichia coli FabI and Various FabI Inhibitor Complexes

  • Lee, Han-Myoung;Singh, N. Jiten
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권1호
    • /
    • pp.162-168
    • /
    • 2011
  • Many ligands have been experimentally designed and tested for their activities as inhibitors against bacterial enoyl-ACP reductase (FabI), ENR. Here the binding energies of the reported ligands with the E. coli ENR-$NAD^+$ were calculated, analyzed and compared, and their molecular dynamics (MD) simulation study was performed. IDN, ZAM and AYM ligands were calculated to have larger binding energies than TCL and IDN has the largest binding energy among the considered ligands (TCL, S54, E26, ZAM, AYM and IDN). The contribution of residues to the ligand binding energy is larger in E. coli ENR-NAD+-IDN than in E. coli ENR-$NAD^+$-TCL, while the contribution of $NAD^+$ is smaller for IDN than for TCL. The large-size ligands having considerable interactions with residues and $NAD^+$ have many effective functional groups such as aromatic $\pi$ rings, acidic hydroxyl groups, and polarizable amide carbonyl groups in common. The cation-$\pi$ interactions have large binding energies, positively charged residues strongly interact with polarisable amide carbonyl group, and the acidic phenoxyl group has strong H-bond interactions. The residues which have strong interactions with the ligands in common are Y146, Y156, M159 and K163. This study of the reported inhibitor candidates is expected to assist the design of feasible ENR inhibitors.

Graphene Derivatives for Bioanalytical Chemistry

  • Min, Dal-Hee
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.10-10
    • /
    • 2011
  • Graphene and graphene derivatives have attracted enormous attention from various research fields for applications in electronic devices, transparent electrodes, biosensors, drug delivery system and surface coatings. In the viewpoint of chemist, the chemical structure of graphene derivatives seems intriguing but detailed structures are being revealed only recently while engineering approaches for various applications are being executed very actively. Recently, several reports are available on interactions of graphene with biomolecules including proteins and nucleic acids. In this talk, I'll introduce recent studies which harness graphene derivatives for developing bioanalytical platforms to quantitatively analyze various enzyme activities. The systems rely on attractive interaction between graphene oxide and nucleic acids or phospholipids.

  • PDF