• Title/Summary/Keyword: drug residue

Search Result 261, Processing Time 0.019 seconds

A study on the drug residues in the raw milk collected over the withdrawal period after mastitis treatment using TTC-II test and delvotest SP (유방염 치료후 휴약기간이 지난 원유내 잔류약제에 관한 연구)

  • Kang, Jeong-hun;Kim, Jin-suk;Lee, Won-chang
    • Korean Journal of Veterinary Research
    • /
    • v.39 no.3
    • /
    • pp.609-615
    • /
    • 1999
  • From July of 1997 to June of 1998, total 279 raw milk samples over withdrawal period after mastitis treatment from dairy farms located in the provinces of Kyonggi and Choongchung were collected to test drug residues. Each sample was tested by TTC- II test and Delvotest SP. Among the total 152 raw milk samples of cow treated by ${\beta}$-lactams, 32 samples(21.2%) were positive on the Delvotest and 15 samples(9.9%) showed positive on the TTC-II test. Also, from the total 37 samples treated by sulfonamides, 5 samples(13.5%) were positive on the Delvotest and 3 samples(8.1%) showed positive on the TTC-II test. For the total 55 raw milk samples of cow treated by tetracyclines, 9 samples(16.4%) were positive on the Delvotest and 5 samples(9.1%) showed positive on the TTC-II test. In addition, from the total 35 samples treated by aminoglycosides, 7 samples(20.0%) were positive on the Delvotest and 5 samples(14.3%) showed positive on the TTC-II test. Our study shows that it is possible that drugs are to be detected by the drug residues test of an individual raw milk even over the withdrawal period after mastitis treatment and the raw milk of bulk tank.

  • PDF

Abiraterone Acetate Attenuates SARS-CoV-2 Replication by Interfering with the Structural Nucleocapsid Protein

  • Kim, Jinsoo;Hwang, Seok Young;Kim, Dongbum;Kim, Minyoung;Baek, Kyeongbin;Kang, Mijeong;An, Seungchan;Gong, Junpyo;Park, Sangkyu;Kandeel, Mahmoud;Lee, Younghee;Noh, Minsoo;Kwon, Hyung-Joo
    • Biomolecules & Therapeutics
    • /
    • v.30 no.5
    • /
    • pp.427-434
    • /
    • 2022
  • The drug repurposing strategy has been applied to the development of emergency COVID-19 therapeutic medicines. Current drug repurposing approaches have been directed against RNA polymerases and viral proteases. Recently, we found that the inhibition of the interaction between the SARS-CoV-2 structural nucleocapsid (N) and spike (S) proteins decreased viral replication. In this study, drug repurposing candidates were screened by in silico molecular docking simulation with the SARS-CoV-2 structural N protein. In the ChEMBL database, 1994 FDA-approved drugs were selected for the in silico virtual screening against the N terminal domain (NTD) of the SARS-CoV-2 N protein. The tyrosine 109 residue in the NTD of the N protein was used as the center of the ligand binding grid for the docking simulation. In plaque forming assays performed with SARS-CoV-2 infected Vero E6 cells, atovaquone, abiraterone acetate, and digoxin exhibited a tendency to reduce the size of the viral plagues without affecting the plaque numbers. Abiraterone acetate significantly decreased the accumulation of viral particles in the cell culture supernatants in a concentration-dependent manner. In addition, abiraterone acetate significantly decreased the production of N protein and S protein in the SARS-CoV-2-infected Vero E6 cells. In conclusion, abiraterone acetate has therapeutic potential to inhibit the viral replication of SARS-CoV-2.

Development and validation of an analytical method for fungicide fenpyrazamine determination in agricultural products by HPLC-UVD (HPLC-UVD를 이용한 살균제 fenpyrazamine의 시험법 개발 및 검증)

  • Park, Hyejin;Do, Jung-Ah;Kwon, Ji-Eun;Lee, Ji-Young;Cho, Yoon-Jae;Kim, Heejung;Oh, Jae-Ho;Rhee, Kyu-Sik;Lee, Sang-Jae;Chang, Moon-Ik
    • Analytical Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.172-180
    • /
    • 2014
  • Fenpyrazamine which is a pyrazole fungicide class for controlling gray mold, sclerotinia rot, and Monilinia in grapevines, stone fruit trees, and vegetables has been registered in republic of Korea in 2013 and the maximum residue limits of fenpyrazamine is set to grape, peach, and mandarin as 5.0, 2.0, and 2.0 mg/kg, respectively. Very reliable and sensitive analytical method for determination of fenpyrazamine residues is required for ensuring the food safety in agricultural products. Fenpyrazamine residues in samples were extracted with acetonitrile, partitioned with dichloromethane, and then purified with silica-SPE cartridge and eluted with hexane and acetone mixture. The purified samples were determined by HPLC-UVD and confirmed with LC-MS and quantified using external standard method. Linear range of fenpyrazamine was between $0.1{\sim}5.0{\mu}g/mL$ with the correlation coefficient (r) 0.999. The average recovery ranged from 71.8 to 102.7% at the spiked level of 0.05, 0.5, and 5.0 mg/kg, while the relative standard deviation was between 0.1 and 7.3%. In addition, limit of detection and limit of quantitation were 0.01 and 0.05 mg/L, respectively. The results revealed that the developed and validated analytical method is possible for fenpyrazamine determination in agricultural product samples and will be used as an official analytical method.

Development of Simultaneous Analytical Method for Streptomycin and Dihydrostreptomycin Detection in Agricultural Products Using LC-MS/MS (LC-MS/MS를 이용한 농산물 중 Streptomycin 및 Dihydrostreptomycin 동시시험법 개발)

  • Lee, Han Sol;Do, Jung-Ah;Park, Ji-Su;Park, Shin-Min;Cho, Sung Min;Shin, Hye-Sun;Jang, Dong Eun;Choi, Young-Nae;Jung, Yong-hyun;Lee, Kangbong
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.1
    • /
    • pp.13-21
    • /
    • 2019
  • A method was developed for the simultaneous detection of an antibiotic fungicide, streptomycin, and its metabolite (dihydrostreptomycin) in agricultural products using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The samples were extracted using methanol adjusted to pH 3 using formic acid, and purified with a HLB (Hydrophilic lipophilic balance) cartridge. The matrix-matched calibration curves were constructed using seven concentration levels, from 0.001 to 0.1 mg/kg, and linearity of five agricultural products (hulled rice, potato, soybean, mandarin, green pepper), with coefficients of determination $(R^2){\geq}0.9906$, for streptomycin and dihydrostreptomycin. The mean recoveries at three fortification levels (LOQ, $LOQ{\times}10$, $LOQ{\times}50$, n = 5) were from 72.0~116.5% and from 72.1~116.0%, and relative standard deviations were less than 12.3% and 12.5%, respectively. The limits of quantification (LOQ) were 0.01 mg/kg, which are satisfactory for quantification levels corresponding with the Positive List System. All optimized results satisfied the criteria ranges requested in the Codex guidelines and the Food Safety Evaluation Department guidelines. The present study could serve as a reference for the establishment of maximum residue limits and be used as basic data for detection of streptomycin and dihydrostreptomycin in food.

Determination of Methoxyfenozide, Chromafenozide and Tebufenozide Residues in Agricultural Commodities Using HPLC-UVD/MS (HPLC-UVD/MS를 이용한 작물 중 methoxyfenozide, chromafenozide 및 tebufenozide의 분석법 확립)

  • Lee, Su-Jin;Kim, Young-Hak;Hwang, Young-Sun;Kwon, Chan-Hyeok;Do, Jeong-A;Im, Moo-Hyeog;Lee, Young-Deuk;Choung, Myoung-Gun
    • The Korean Journal of Pesticide Science
    • /
    • v.14 no.1
    • /
    • pp.37-48
    • /
    • 2010
  • The diacylhydrazine insecticides, methoxyfenozide, chromafenozide and tebufenozide are new-generation insecticides. These insecticides induce premature molting and cause the death of insects by mimicking their hormone. Also, these insecticides have already been widely used for vegetables planting in worldwide. Highperformance liquid chromatography (HPLC) is the most widely used procedure for determination of each compound residues in crops. However, simultaneous analysis method of these diacylhydrazine insecticides was not reported. The purpose of this study is to develop a simultaneous determination procedure of methoxyfenozide, chromafenozide and tebufenozide residue in crops using HPLC-UVD/MS method. These insecticide residues were extracted with acetone from representative samples of five raw products which comprised hulled rice, soybean, apple, pepper, and Chinese cabbage. The extract was diluted with saline water, and dichloromethane partition was followed to recover these insecticides from the aqueous phase. Florisil column chromatography was additionally employed for final cleanup of the extracts. The analytes were quantitated by HPLCUVD/MS, using a $C_{18}$ column. The crops were fortified with each insecticide at two levels per crop. Mean recoveries ranged from 89.0 to 104.8% in five representative agricultural commodities. The coefficients of variation were less than 3.9%. Quantitative limits of methoxyfenozide, chromafenozide and tebufenozide were 0.04 mg/kg in crop samples. A HPLC-UVD/MS with selected-ion monitoring was also provided to confirm the suspected residues. The proposed simultaneous analysis method was reproducible and sensitive enough to determine the residues of methoxyfenozide, chromafenozide and tebufenozide in agricultural commodities.

Levels of sulfonamides for animals in food (식품 중 설폰아마이드계 동물용의약품의 잔류실태)

  • Jeong, Jiyoon;Hong, Mooki;Choi, Dongmi
    • Analytical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.84-90
    • /
    • 2007
  • To determine levels of 11 sulfonamides for animals in food, simultaneously, a selective method of high performance liquid chromatography with UV detector has been applied. The targets were sulfachlorpyridazine (SCP), sulfadiazine (SDZ), sulfadimethoxine (SDM), sulfisoxazole (SSX), sulfamerazine (SMZ), sulfamethazine (SMT), sulfamethoxazole (SMX), sulfamethoxypyridazine (SMP), sulfamonomethoxine (SMM), sulfaquinoxaline (SQX) and sulfathiazole (STZ). Food samples were beef, pork, chicken, milk and whole egg that were collected at the main 6 cities in Korea as Seoul, Busan, Daejon, Incheon, Mokpo and Gangneung. After homogenizing food samples with sodium phosphate solution and acetonitrile, it was extracted with n-hexane. The mobile phase gradient was a mixture of 5 mM potassium phosphate (pH 3.25) and methanol with a gradient ratio from 100:0 to 30:70. The UV wavelength was 270 nm. The overall recoveries were ranged from 75% to 95% and the limit of detection was minimum 0.004 mg/kg for SMT, and 0.007 mg/kg for STZ at signal/noise > 3, respectively. As results, sulfonamide drugs were not detected in most of the selected food samples, however, sulfamonomethoxine was detected in meat. The determined level of sulfamonomethoxine were 0.03 and 0.06 mg/kg for beef that were below the MRLs.

Study on Reduction Factors of Residual Pesticides in Processing of Ginseng(I) (인삼 가공 중 잔류농약의 감소계수연구 ( I ))

  • In, Moo-Hyeog;Kwon, Kwang-Il;Park, Kun-Sang;Choi, Dong-Mi;Chang, Moon-Ik;Jeong, Ji-Yoon;Lee, Kyung-Jin;Yun, Won-Kap;Hong, Moo-Ki;Woo, Gun-Jo
    • The Korean Journal of Pesticide Science
    • /
    • v.10 no.1
    • /
    • pp.22-27
    • /
    • 2006
  • The aim of this study was to establish the maximum residue limits(MRLs) of fenhexamid, azoxystrobin and cyprodinil pesticides in ginseng products. The pesticides were applied to the cultivation field of ginseng, and they were harvested and processed to make dried ginseng and ginseng extract. The reduction factors of residual pesticides were calculated by determination of the pesticides in each processing stage of ginseng. Reduction factor (dry basis) of pesticides (azoxystrobin, fenhexamid, cyprodinil) were 0.73, 0.96 and 0.24 for dried ginseng and 3.23, 5.74 and 1.20 for ginseng extract. All the residual pesticides were reduced by drying or processing of ginseng, however, fenhexamid did not.

Management of Veterinary Drug Residues in Food (식품 중 잔류동물용의약품의 안전관리)

  • Oh, Jae-Ho;Kwon, Chan-Hyeok;Jeon, Jong-Sup;Choi, Dong-Mi
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.3
    • /
    • pp.310-325
    • /
    • 2009
  • Veterinary drugs have been used to prevent livestock diseases for many years. In spite of having advantages, sometimes indiscriminate application, overdose and abuse may cause risk for human. Therefore, management and risk assessment of veterinary drugs become essential to ensure food safety. So the National Veterinary Research & Quarantine Service (NVRQS) impose on registration for use of veterinary drugs also Korea Food and Drug Administration (KFDA) fixed the maximum residue limits (MRLs) for veterinary drugs in food. Basically, KFDA set MRLs based on the veterinary drugs residual data. Moreover, KFDA estimates the theoretical maximum daily intake (TMDI) with food consumption data and population mean body weight. Recently, 116 veterinary drug MRLs including banned veterinary drugs have been established and other 32 veterinary drugs MRLs will be established within 2009. In 2010, MRLs among antibiotics and synthetic antibacterial agents in livestock fishery products (including milk and eggs) and honey (including royal jelly and propolis) which have not been set in Korea Food Code and Codex Alimentarius Commission (CAC) will be regulated as uniform limit (0.03 mg/kg). In future, veterinary drugs will be controlled strictly to strengthen public health by improving analytical method.

Establishment of an Analytical Method for Determination of Fungicide Oxathiapiprolin in Agricultural Commodities using HPLC-UV Detector (HPLC-UVD를 이용한 농산물 중 살균제 Oxathiapiprolin의 잔류분석법 확립)

  • Jang, Jin;Kim, Heejung;Do, Jung Ah;Ko, Ah-Young;Lee, Eun Hyang;Ju, Yunji;Kim, Eunju;Chang, Moon-Ik;Rhee, Gyu-Seek
    • Journal of Food Hygiene and Safety
    • /
    • v.31 no.3
    • /
    • pp.186-193
    • /
    • 2016
  • An analytical method was developed for the determination of oxathiapiprolin in agricultural commodities. Oxathiapiprolin is a new oomycide (fungicide of piperidinyl thiazole isoxazoline class) which controls downy mildew in cucurbits caused by Pseudoperonospora cubensis (oomycete plant pathogen). Agricultural commodities were extracted with acetonitrile and partitioned with dichloromethane to remove the interference, adjusting pH between 9 and 10 by 1 N sodium hydroxide. After purification by silica SPE cartridge to clean up the interference of organic compounds, they were finally quantified by HPLC-UVD (high performance liquid chromatograph ultraviolet detector) using a wavelength at 260 nm and confirmed by LC-MS (liquid chromatograph mass spectrometer) in electro-spray ionization positive ion mode. The standard calibration curve was linear with coefficients of determination ($r^2$) 1.00 over the calibration ranges (0.025-2.5 mg/L). Recoveries were ranged between 86.7 to 112.7%, with relative standard deviations less than 10% at three concentration levels (LOQ, 10LOQ, and 50LOQ) performing five replicates. The overall results were determined and estimated according to the CODEX guidelines (CAC/GL40). The proposed method for determination of oxathiapiprolin residues in agricultural commodities can be used as an official method.

Development of a Simultaneous Analytical Method for Determination of Trinexapac-ethyl and Trinexapac in Agricultural Products Using LC-MS/MS (LC-MS/MS를 이용한 농산물 중 식물생장조절제 Trinexapac-ethyl과 대사산물 Trinexapac의 동시분석법 개발)

  • Jang, Jin;Kim, Heejung;Ko, Ah-Young;Lee, Eun-Hyang;Ju, Yunji;Chang, Moon-Ik;Rhee, Gyu-Seek;Suh, Saejung
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.4
    • /
    • pp.318-327
    • /
    • 2015
  • BACKGROUND: Trinexapac-ethyl is a plant growth regulator (PGR) that inhibits the biosynthesis of plant growth hormone (gibberellin). It is used for the prevention of lodging, increasing yields of cereals, and reducing mowing of turf. The experiment was conducted to establish a determination method for trinexapac-ethyl and its metabolites trinexapac in agricultural products using LC-MS/MS.METHODS AND RESULTS: Trinexapac-ethyl and trinexapac were extracted from agricultural products with methanol/ distilled water and the extract was partitioned with dichloromethane and then detected by LC-MS/MS. Limit of detection(LOD) was 0.003 mg/kg and limit of quantification(LOQ) was 0.01 mg/kg, respectively. Matrix matched calibration curves were linear over the calibration ranges (0.01-1.0 mg/L) for all the analytes into blank extract withr2> 0.997. For validation purposes, recovery studies were carried out at three different concentration levels (LOQ, 10LOQ, 50LOQ,n=5). Recoveries of trinexapacethyl and trinexapac were within the range of 73.6-106.9%, 72.7-99.2%, respectively. The relative standard deviations (RSDs) were less than 9.0%. All values were consistent with the criteria ranges requested in the CODEX guideline(CAC/GL 40, 2003).CONCLUSION: The proposed analytical method was accurate, effective and sensitive for trinexapac-ethyl and trinexapac determination and it can be used to as an official method in Korea.