• 제목/요약/키워드: drug molecule

검색결과 162건 처리시간 0.025초

Synthesis and Characterization of Lactobionic Acid Grafted Phenylalanyl-Glycyl-Chitosan

  • Li, He-Ping;Li, Shan;Wang, Zhou-Dong;Qin, Long
    • 대한화학회지
    • /
    • 제55권6호
    • /
    • pp.978-982
    • /
    • 2011
  • In order to enhance the target action of chitosan-based drug, this paper firstly prepared phenylalanyl-glycylchitosan (Phe-Gly-CS) by grafting the key intermediate, bromoacetyl-phenylalanine (BA-Phe) onto chitosan. Then the target sugar molecule, lactobionic acid (LA), was grafted to Phe-Gly-CS and the topic compound lactobionic acid grafted phenylalanyl-glycyl-chitosan (Phe-Gly-CS-LA) was finally obtained in a yield of 78.8%. The product were characterized by FTIR, MS and 1H NMR. The preparing condition of BA-Phe was optimized as follows: the best pH was 10-11, the optimum temperature was $-4^{\circ}C$, the reaction time was 1.5 h.

항체 : 치료제로서의 부활 (Resurrection of antibody as a therapeutic drug)

  • 정홍근;정준호
    • IMMUNE NETWORK
    • /
    • 제1권1호
    • /
    • pp.7-13
    • /
    • 2001
  • Currently 18 monoclonal antibodies were approved by FDA for inj ection into humans for therapeutic or diagnostic purpose. And 146 clinical trials are under way to evaluate the efficacy of monoclonal antibodies as anti-cancer agents, which comprise 9 % of clinical trials in cancer therapy field. When considering a lot of disappointment and worries existed in this field during the past 15 years, this boom could be called as resurrection. Antibodies have several merits over small molecule drug. First of all it is easier and faster in development, as proper immunization of the target proteins usually raises good antibody response. The side effects of antibodies are more likely to be checked out in immunohistomchemical staining of whole human tissues. Antibody has better pharmacokinetics, which means a longer half-life. And it is non-toxic as it is purely a "natural drug. Vast array of methods was developed to get the recombinant antibodies to be used as drug. The mice with human immunoglobulin genes were generated. Fully human antibodies can be developed in fast and easy way from these mice through immunization. These mice could make even human monoclonal antibodies against any human antigen like albumin. The concept of combinatorial library was also actively adopted for this purpose. Specific antibodies can be screened out from phage, mRNA, ribosomal library displaying recombinant antibodies like single chain Fvs or Fabs. Then the coding genes of these specific antibodies are obtained from the selected protein-gene units, and used for industrial scale production. Both $na\ddot{i}ve$ and immunized libraries are proved to be effective for this purpose. In post-map arena, antibodies are receiving another spotlight as molecular probes against numerous targets screened out from functional genomics or proteomics. Actually many of these antibodies used for this purpose are already human ones. Through alliance of these two actively growing research areas, antibody would play a central role in target discovery and drug development.

  • PDF

단백질 약물 방출속도에 미치는 친수성 첨가제의 영향 (Effects of Hydrophilic Additives on the Release Rate of Protein Drugs)

  • 권영관;김지현;유영제
    • KSBB Journal
    • /
    • 제22권4호
    • /
    • pp.213-217
    • /
    • 2007
  • 첨가제가 단백질 약물 방출 속도 및 약물 제제 제조 및 구조에 미치는 영향을 고찰하였다. 친수성 첨가제인 D-sorbitol의 경우 친유성 첨가제보다 단백질 약물 방출 속도를 감소시킬 수 있었으며 최적의 농도는 3% (w/v)로 나타났다. 또한 제제 제조시 점도를 낮게 유지할 뿐 아니라 상분리 없는 균일한 pluronic 용액상태를 유지하여 약물이 첨가될 경우에 균일한 약물제제를 만들 수 있었다. 한편 D-sorbitol은 pluronic 수용액의 CMC를 낮추고 마이셀 표면에 작용하여 구조를 강화하는 역할을 수행하는 것으로 보인다. 따라서 pluronic 제제에 D-sorbitol을 첨가하여 단백질 약물의 안정성을 향상시키고 효과적인 약물전달 시스템을 설계할 수 있었다.

Property-based Design of Ion-Channel-Targeted Library

  • Ahn, Ji-Young;Nam, Ky-Youb;Chang, Byung-Ha;Yoon, Jeong-Hyeok;Cho, Seung-Joo;Koh, Hun-Yeong;No, Kyoung-Tai
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2005년도 BIOINFO 2005
    • /
    • pp.134-138
    • /
    • 2005
  • The design of ion channel targeted library is a valuable methodology that can aid in the selection and prioritization of potential ion channel-likeness for ion-channel-targeted bio-screening from large commercial available chemical pool. The differences of property profiling between the 93 ion-channel active compounds from MDDR and CMC database and the ACDSC compounds were classified by suitable descriptors calculated with preADME software. Through the PCA, clustering, and similarity analysis, the compounds capable of ion channel activity were defined in ACDSC compounds pool. The designed library showed a tendency to follow the property profile of ion-channel active compounds and can be implemented with great time and economical efficiencies of ligand-based drug design or virtual high throughput screening from an enormous small molecule space.

  • PDF

티로신 키나아제 저해제의 간독성에 대한 고찰 (Reviews on the Hepatotoxicity of Tyrosine Kinase Inhibitors)

  • 한지민;곽혜선
    • 한국임상약학회지
    • /
    • 제29권4호
    • /
    • pp.223-230
    • /
    • 2019
  • Background: Small-molecule tyrosine kinase inhibitors (TKIs) have had major impacts on anticancer therapy by targeting the catalytic activities of dysregulated tyrosine kinases. TKIs have not presented traditional toxicities; however, some serious adverse effects, including hepatotoxicity, have been documented in clinical trials and post-marketing surveillance. Although TKI-induced hepatotoxicity can cause severe clinical complications in patients, the underlying mechanism is still unclear. Methods: Studies on TKI-induced hepatotoxicity were identified by Pubmed search, and relevant articles were reviewed. Results: Immunoallergic reaction, cytochrome P (CYP) 450 polymorphisms, and formation of reactive metabolites are under consideration as mechanisms of TKI-induced hepatotoxicity. Host protein-drug metabolite conjugates are recognized as antigens by class II major histocompatibility complexes and are believed to cause liver injuries. Polymorphisms in CYP, which influences TKI metabolism, can slow TKI metabolism and may induce development of hepatotoxicity. The formation of reactive metabolites during drug metabolism can induce hepatotoxicity by directly causing cytotoxicity, leading to cell dysfunction, and indirect toxicity by mediating secondary immune reactions. Concurrent use of various medications with TKI can also cause hepatotoxicity by affecting drug transporter or enzyme activities. Conclusion: Periodic monitoring of patients taking TKIs and risk/benefit reassessments though post marketing surveillance are necessary to prevent hepatotoxicity.

Application of metabolic profiling for biomarker discovery

  • Hwang, Geum-Sook
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2007년도 Proceedings of The Convention
    • /
    • pp.19-27
    • /
    • 2007
  • An important potential of metabolomics-based approach is the possibility to develop fingerprints of diseases or cellular responses to classes of compounds with known common biological effect. Such fingerprints have the potential to allow classification of disease states or compounds, to provide mechanistic information on cellular perturbations and pathways and to identify biomarkers specific for disease severity and drug efficacy. Metabolic profiles of biological fluids contain a vast array of endogenous metabolites. Changes in those profiles resulting from perturbations of the system can be observed using analytical techniques, such as NMR and MS. $^1H$ NMR was used to generate a molecular fingerprint of serum or urinary sample, and then pattern recognition technique was applied to identity molecular signatures associated with the specific diseases or drug efficiency. Several metabolites that differentiate disease samples from the control were thoroughly characterized by NMR spectroscopy. We investigated the metabolic changes in human normal and clinical samples using $^1H$ NMR. Spectral data were applied to targeted profiling and spectral binning method, and then multivariate statistical data analysis (MVDA) was used to examine in detail the modulation of small molecule candidate biomarkers. We show that targeted profiling produces robust models, generates accurate metabolite concentration data, and provides data that can be used to help understand metabolic differences between healthy and disease population. Such metabolic signatures could provide diagnostic markers for a disease state or biomarkers for drug response phenotypes.

  • PDF

Novel DOT1L ReceptorNatural Inhibitors Involved in Mixed Lineage Leukemia: a Virtual Screening, Molecular Docking and Dynamics Simulation Study

  • Raj, Utkarsh;Kumar, Himansu;Gupta, Saurabh;Varadwaj, Pritish Kumar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권9호
    • /
    • pp.3817-3825
    • /
    • 2015
  • Background: The human protein methyl-transferase DOT1L catalyzes the methylation of histone H3 on lysine 79 (H3K79) at homeobox genes and is also involved in a number of significant processes ranging from gene expression to DNA-damage response and cell cycle progression. Inhibition of DOT1L activity by shRNA or small-molecule inhibitors has been established to prevent proliferation of various MLL-rearranged leukemia cells in vitro, establishing DOT1L an attractive therapeutic target for mixed lineage leukemia (MLL). Most of the drugs currently in use for the MLL treatment are reported to have low efficacy, hence this study focused on various natural compounds which exhibit minimal toxic effects and high efficacy for the target receptor. Materials and Methods: Structures of human protein methyl-transferase DOT1L and natural compound databases were downloaded from various sources. Virtual screening, molecular docking, dynamics simulation and drug likeness studies were performed for those natural compounds to evaluate and analyze their anti-cancer activity. Results: The top five screened compounds possessing good binding affinity were identified as potential high affinity inhibitors against DOT1L's active site. The top ranking molecule amongst the screened ligands had a Glide g-score of -10.940 kcal/mol and Glide e-model score of -86.011 with 5 hydrogen bonds and 12 hydrophobic contacts. This ligand's behaviour also showed consistency during the simulation of protein-ligand complex for 20000 ps, which is indicative of its stability in the receptor pocket. Conclusions: The ligand obtained out of this screening study can be considered as a potential inhibitor for DOT1L and further can be treated as a lead for the drug designing pipeline.

Small Molecule Inhibitors of Middle East Respiratory Syndrome Coronavirus Fusion by Targeting Cavities on Heptad Repeat Trimers

  • Kandeel, Mahmoud;Yamamoto, Mizuki;Al-Taher, Abdulla;Watanabe, Aya;Oh-hashi, Kentaro;Park, Byoung Kwon;Kwon, Hyung-Joo;Inoue, Jun-ichiro;Al-Nazawi, Mohammed
    • Biomolecules & Therapeutics
    • /
    • 제28권4호
    • /
    • pp.311-319
    • /
    • 2020
  • Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is a newly emerging viral disease with fatal outcomes. However, no MERS-CoV-specific treatment is commercially available. Given the absence of previous structure-based drug discovery studies targeting MERS-CoV fusion proteins, this set of compounds is considered the first generation of MERS-CoV small molecule fusion inhibitors. After a virtual screening campaign of 1.56 million compounds followed by cell-cell fusion assay and MERS-CoV plaques inhibition assay, three new compounds were identified. Compound numbers 22, 73, and 74 showed IC50 values of 12.6, 21.8, and 11.12 µM, respectively, and were most effective at the onset of spike-receptor interactions. The compounds exhibited safe profiles against Human embryonic kidney cells 293 at a concentration of 20 µM with no observed toxicity in Vero cells at 10 µM. The experimental results are accompanied with predicted favorable pharmacokinetic descriptors and drug-likeness parameters. In conclusion, this study provides the first generation of MERS-CoV fusion inhibitors with potencies in the low micromolar range.

${\beta}$-시클로덱스트린과의 포접에의한 디플로페낙나트륨의 용해도 및 생체흡수율 증가 (Solubility and In vivo Absorption Enhancement of Diclofenac Sodium by ${\beta}-Cyclodextrin$ Complexation)

  • 이경태;김종환;김주일;김승조;서희경;서성훈
    • Journal of Pharmaceutical Investigation
    • /
    • 제26권3호
    • /
    • pp.169-174
    • /
    • 1996
  • Inclusion complexes of diclofenac sodium with ${\beta}-cyclodextrin$ were prepared in aqueous solution, alkaline solution and solid phase. The interaction of diclofenac sodium with ${\beta}-cyclodextrin$ in pH 9.0 alkaline solution was evaluated by the solubility method and the instrumental analysis such as thermal analysis, infrared spectroscopy, X-ray diffractometry. The solubility of diclofenac sodium was increased linearly with the increase in the concentration of ${\beta}-cyclodextrin$up to 0.15 mol and showed that the aqueous solubility rate of diclofenac sodium was significantly increased by complex with ${\beta}-cyclodextrin$. The optimum composition of this complex was one molecule of ${\beta}-cyclodextrin$ included 1.59 molecular weight of diclofenac sodium as a guest molecule. The pharmacokinetic parameters of the diclofenac sodium and the complex with ${\beta}-cyclodextrin$ were studied in rats by oral route. $T_{max}$ between drug alone and inclusion complex showed significant difference to be 120 minute and 20 minute respectively. Both of $C_{max}$ and AUC of inclusion complex was about 40% higher than drug alone. It is estimated from the data in this study that complexation of diclofenac sodium with ${\beta}-cyclodextrin$ increased the absorption rate and improved the bioavalability of the diclofenac sodium by the formation of a water-soluble complexes.

  • PDF

REGULATION OF RAT ADRENAL MEDULLARY PHENYLETHANOL AMINE N-METHYLTRANSFERASE

  • Yoo, Young-Sook;Wong, Dona L.
    • Toxicological Research
    • /
    • 제6권1호
    • /
    • pp.89-97
    • /
    • 1990
  • Neural regulation of phenylethanolamine N-meth-yltransferase (PNMT) was studied with reserpine as a neuronal agent in rat adrenal medulla. The enzyme activity assay and northern blot analysis were performed to determine whether the induction of PNMT activity after reserpine treatment was associated with elevation of mRNA coding for PNMT. The i.p. administration of reserpine (2.5 mg/kg) on alternate days fot 4 injections to rats brought about 30% increase of adrenal medullary PNMT activity and approximately 60% stimulation of the PNMT mRNA level in rat adrenal gland. A dose of 10 mg/kg of reserpine was chosen to perform optimum induction of PNMT activity in the rat adrenal gland based on the results of dose response curve of reserpine. Time course reserpine (10 mg/kg) effects on the rat adrenal medullary PNMT were as follows: 1. Peripheral PNMT activity reached maximum level after 7 days of drug treatment on alternate days. 2. Trans-synaptic stimulation by reserpine increased pretranslational activity of rat adrenal PNMT, but not translational activity. 3. Immunotitration of PNMT molecule after reserpine treatment indicated that reserpine produced an enzyme with greater antibody affinity than endogenous molecule in the rat adrenal gland.

  • PDF