• Title/Summary/Keyword: drug molecule

Search Result 162, Processing Time 0.019 seconds

Screening of novel alkaloid inhibitors for vascular endothelial growth factor in cancer cells: an integrated computational approach

  • Shahik, Shah Md.;Salauddin, Asma;Hossain, Md. Shakhawat;Noyon, Sajjad Hossain;Moin, Abu Tayab;Mizan, Shagufta;Raza, Md. Thosif
    • Genomics & Informatics
    • /
    • v.19 no.1
    • /
    • pp.6.1-6.10
    • /
    • 2021
  • Vascular endothelial growth factor (VEGF) is expressed at elevated levels by most cancer cells, which can stimulate vascular endothelial cell growth, survival, proliferation as well as trigger angiogenesis modulated by VEGF and VEGFR (a tyrosine kinase receptor) signaling. The angiogenic effects of the VEGF family are thought to be primarily mediated through the interaction of VEGF with VEGFR-2. Targeting this signaling molecule and its receptor is a novel approach for blocking angiogenesis. In recent years virtual high throughput screening has emerged as a widely accepted powerful technique in the identification of novel and diverse leads. The high resolution X-ray structure of VEGF has paved the way to introduce new small molecular inhibitors by structure-based virtual screening. In this study using different alkaloid molecules as potential novel inhibitors of VEGF, we proposed three alkaloid candidates for inhibiting VEGF and VEGFR mediated angiogenesis. As these three alkaloid compounds exhibited high scoring functions, which also highlights their high binding ability, it is evident that these alkaloids can be taken to further drug development pipelines for use as novel lead compounds to design new and effective drugs against cancer.

Afatinib Mediates Autophagic Degradation of ORAI1, STIM1, and SERCA2, Which Inhibits Proliferation of Non-Small Cell Lung Cancer Cells

  • Kim, Mi Seong;Kim, So Hui;Yang, Sei-Hoon;Kim, Min Seuk
    • Tuberculosis and Respiratory Diseases
    • /
    • v.85 no.2
    • /
    • pp.147-154
    • /
    • 2022
  • Background: The expression of calcium signaling pathway molecules is altered in various carcinomas, which are related to the proliferation and altered characteristics of cancer cells. However, changes in calcium signaling in anti-cancer drug-resistant cells (bearing a T790M mutation in epidermal growth factor receptor [EGFR]) remain unclear. Methods: Afatinib-mediated changes in the level of store-operated Ca2+ entry (SOCE)-related proteins and intracellular Ca2+ level in non-small cell lung cancer cells with T790M mutation in the EGFR gene were analyzed using western blot and ratiometric assays, respectively. Afatinib-mediated autophagic flux was evaluated by measuring the cleavage of LC3B-II. Flow cytometry and cell proliferation assays were conducted to assess cell apoptosis and proliferation. Results: The levels of SOCE-mediating proteins (ORAI calcium release-activated calcium modulator 1 [ORAI1], stromal interaction molecule 1 [STIM1], and sarco/endoplasmic reticulum Ca2+ ATPase [SERCA2]) decreased after afatinib treatment in non-small cell lung cancer cells, whereas the levels of SOCE-related proteins did not change in gefitinib-resistant non-small cell lung cancer cells (PC-9/GR; bearing a T790M mutation in EGFR). Notably, the expression level of SOCE-related proteins in PC-9/GR cells was reduced also responding to afatinib in the absence of extracellular Ca2+. Moreover, extracellular Ca2+ influx through the SOCE was significantly reduced in PC-9 cells pre-treated with afatinib than in the control group. Additionally, afatinib was found to decrease the level of SOCE-related proteins through autophagic degradation, and the proliferation of PC-9GR cells was significantly inhibited by a lack of extracellular Ca2+. Conclusion: Extracellular Ca2+ plays important role in afatinib-mediated autophagic degradation of SOCE-related proteins in cells with T790M mutation in the EGFR gene and extracellular Ca2+ is essential for determining anti-cancer drug efficacy.

Rheumatiod Arthritis: An Updated Overview of Latest Therapy and Drug Delivery

  • Kesharwani, Disha;Paliwal, Rishi;Satapathy, Trilochan;Paul, Swarnali Das
    • Journal of Pharmacopuncture
    • /
    • v.22 no.4
    • /
    • pp.210-224
    • /
    • 2019
  • Rheumatoid arthritis is a severe autoimmune disorder, related to joints. It is associated with serious cartilage destruction. This causes disability and reduces the excellence of life. Numerous treatments are existed to combat this disease, however, they are not very efficient and possess severe side effects, higher doses, and frequent administration. Therefore, newer therapies are developed to overcome all these limitations. These include different monoclonal antibodies, immunoglobulins, small molecules used for immunotherapy and transgenes for gene therapy. One of the main goals of these new generation therapeutics is to address the underlying distressing biological processes by specifically targeting the causative agents with fewer systemic side effects and greater patient console. It is very fortuitous that loads of progressive investigations are going on in this field and many of them have entered into the successful clinical trial. But till date, a limited molecule has got FDA clearance and entered the market for treating this devastating disease. This review highlights the overview of conventional therapy and advancements in newer therapeutics including immunotherapy and gene therapy for rheumatoid arthritis. Further, different novel techniques for the delivery of these therapeutics of active and passive targeting are also described.

Inclusion Complexation of a Family of Cyclsohoraoses with Indomethacin

  • Lee, Sang-Hoo;Kwon, Chan-Ho;Choi, Young-Jin;Seo, Dong-Hyuk;Kim, Hyun-Won;Jung, Seun-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.3
    • /
    • pp.463-468
    • /
    • 2001
  • Cyclosophoraoses are a class of unbranced cyclic-(1longrightarrow2)-${\beta}$-D-glucans found in the Rhizobium species. Their unique cyclic structures and high solubility make them potent for inclusion complexation as a host for an insoluble guest molecule. A family of neutral cyclosophoraoses (DP 17-27) isolated from Rhizobium meliloti 2011 was used as a host for inclusion complexation with an insoluble guest drug, indomethacin. A high performance liquid chromatographic analysis indicated that the inclusion complexation of cyclosophoraoses greatly ehanced the solubility of indomethacin compared with ${\beta}$-cyclodextrin. The estimated value of the association constant of the complex in water for $\beta$-cyclodextrin and cyclosophoraoses was $523M^{-1} and 17,570M^{-1}$, respectively. NMR spectroscopy showed that the inclusion complex was characterized by the interaction of the indole ring moiety of indomethacin with the cavity of cyclosophoraoses.

  • PDF

Dehydroevodiamine.HCl Improves Stress-Induced Memory Impairments and Depression Like Behavior in Rats

  • Kim, Hee Jin;Shin, Ki Young;Chang, Keun-A;Ahn, Sangzin;Choi, Hee Soon;Kim, Hye-Sun;Suh, Yoo-Hun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.1
    • /
    • pp.55-59
    • /
    • 2014
  • Dehydroevodiamine HCl (DHED) has been reported to prevent memory impairment and neuronal cell loss in a rat model with cognitive disturbance. We investigated the effect of DHED on memory impairment and behavioral abnormality caused by stress. We demonstrated that DHED can improve stress-induced memory impairments and depression-like behaviors by using open-field test, Y-maze test and forced swimming test. DHED treatment significantly recovered the decreases in the levels of neural cell adhesion molecule (NCAM) proteins caused by stress and the decreases in cell viability. Our results suggested that DHED is a potential drug candidate for neuronal death, memory impairment and depression induced by stress.

Characterization of Antibacterial activity and Synthesis of Sulfanilamide Polymer using Crosslinking Agent (가교제를 이용한 Sulfanilamide 중합체의 합성과 항균특성)

  • Kim, Jong-Woan;Yoon, Chul-Hun;Hwang, Sung-Kwy;Kong, Seung-Dae;Lee, Han-Seab
    • Journal of the Korean Applied Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.37-42
    • /
    • 2000
  • Drug delivery system(DDS) have been actively studied for the past twenty years. Dual action agents are unique chemical entities comprised of two different types of antibacterial compounds covalently linked together in a single molecule in such a way that both components are able to exert their bactericidal properties. In spite of the advent of the antibacterial agent the sulfa agents are the most widely used antibacterial agent today. In this study, new antibacterials derivative was synthesized using glutaraldehyde such as crosslinking agent for the purpose of dual-action as DDS study. Antibacterial activity of these new synthetic derivative between their structures and activities were examined by disc diffusion method. As a result, new synthetic derivative exhibited the broad antibacterial activities against Gram(+) and Gram(-) bacilli. Especially, the antibacterial effect of new synthetic derivative against Gram negative(Esherichia. coli) was much stronger than that against Gram positive.

Inhibition of Proliferation of Cervical and Leukemic Cancer Cells by Penicillin G

  • Banerjee, Aditya;Dahiya, Meetu;Anand, M.T.;Kumar, Sudhir
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.3
    • /
    • pp.2127-2130
    • /
    • 2013
  • Cancer, despite all the efforts, still causes one in five deaths worldwide. Surgery, chemotherapy and radiotherapy provide inadequate protection and instead affect normal cells along with cancer cells. The search for cancer cures from natural products (plants and animals) has been practice for over a decade and the use of purified chemical to treat cancer still continues. Several studies have been undertaken during last three decades to find the anti-cancerous property of various plant extract and toxins secreted by animals and micro-organism. These lead to the discovery of several promising molecule having anticancer activity, some of which are in clinical trial and may emerged to be a potential future drug in cancer therapy. In this study we have used penicillin to evaluate its anti-cancer activity. It shown significant effects at cellular and molecular levels against growth of HeLa and K562 cell lines.

Computational Analysis of Human Chemokine Receptor Type 6

  • Sridharan, Sindhiya;Saifullah, Ayesha Zainab;Nagarajan, Santhosh Kumar;Madhavan, Thirumurthy
    • Journal of Integrative Natural Science
    • /
    • v.11 no.2
    • /
    • pp.121-129
    • /
    • 2018
  • CXCR6 is a major target in drug design as it is a determinant receptor in many diseases like AIDS, Type I Diabetes, some cancer types, atherosclerosis, tumor formation, liver disease and steatohepatitis. In this study, we propose the active site residues of CXCR6 molecule. We employed homology modelling and molecular docking approach to generate the 3D structure for CXCR6 and to explore its interaction between the antagonists and agonists. 3D models were generated using 14 different templates having high sequence identity with CXCR6. Surflex docking studies using pyridine and pyrimidine derivatives enabled the analysis of the binding site and finding of the important residues involved in binding. 3D structure of CXCL16, a natural ligand for CXCR6, was modelled using PHYRE and protein - protein docking was performed using ClusPro. The residues which were found to be crucial in interaction with the ligand are THR110, PHE113, TYR114, GLN160, GLN195, CYS251 and SER255. This study can be used as a guide for therapeutic studies of human CXCR6.

Chungyangeum Attenuated the Allergic Inflammation in vivo and in vitro

  • Kim, Su-Jin;Lee, Jae-Ho;Oh, Chung Hwan;Oh, Sa-Rang;Jung, Ji-Wook
    • Biomedical Science Letters
    • /
    • v.19 no.4
    • /
    • pp.285-294
    • /
    • 2013
  • Chungyangeum (CYE) is a newly designed herbal drug formula for the purpose of treating atopic dermatitis. The aim of the present study is to elucidate whether and how CYE modulates the allergy inflammation in vitro and in vivo. We investigate to ascertain the pharmacological effects of CYE on both compound 48/80 or histamine-induced scratching behaviors and 2, 4-dinitrochlrobenzene (DNCB)-induced atopic dermatitis in mice. Additionally, we attempted to determine the effects of CYE on lipopolysaccharide (LPS)-induced inflammatory responses in macrophages. The findings of this study demonstrated that CYE reduced compound 48/80 or histamine-induced scratching behaviors and DNCB-induced atopic dermatitis in mice. The CYE inhibited the production of inflammatory cytokines as well as the activation of NF-${\kappa}B$ and caspase-1 in stimulated macrophages. Collectively, the findings of this study provide us with novel insights into the pharmacological actions of CYE as a potential molecule for use in the treatment of allergic inflammation diseases.

A Study on the Synthesis and Refining of Isothiazoline Derivatives (Isothiazoline 유도체의 합성 및 정제에 관한 연구)

  • Sung, Ki-Chun;Kim, Ki-Jun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.93-102
    • /
    • 1997
  • Isothiazoline derivatives is widely used to food, medical drug and industrial goods, cosmetics etcs, and it makes to restrain and to sterilize a breeding of microbe as a preservative and a sterilizing agent. It differs with the raw material of paraoxybenzoic acid derivatives or imidazolydinyl urea to be in use at present, on the efficacy and effect, and has various characteristics. This synthesis makes 3,3'-dithiodipropionic chloride to add a thionyl chloride in 3,3'-dithiodipropionic acid, and 3,3'-dithiodipropionic methyl amide makes to synthesize in a reflux reaction the mono methyl amine to 3,3'-dithiodipropionic chloride. And last synthesis becomes to make chlorination-cyclization molecule doing a reflux reaction in the temperature of $90{\sim}100^{\circ}C$ to mix excessively thionyl chloride and ethylene dichloride to 3,3'-dithiodipropionic methyl amide. The last synthesis material has got in the mixture of 5-chloro-2-methyl-4-isothiazoline-3-one and 2-methyl-4-isothiazoline-3-one, and it is so-called isothiazoline derivatives. The purification of isothiazoline derivatives makes to fuse in ethyl acetate, and makes to decolorize and to deodorize in recrystallization. This experiment has been in synthesis and purification of isothiazoline derivatives, and has tried to measure on the antisepsis and sterilization function of microbe according to pH or content change.