• Title/Summary/Keyword: drowsy driver

Search Result 47, Processing Time 0.03 seconds

A Study on Design Elements of Freeway Rest Areas for Drowsy Drivers (고속도로 졸음쉼터 설계요소 정립 연구)

  • Han, Da Jeong;Kim, Eungcheol;Yang, Jae Ho
    • International Journal of Highway Engineering
    • /
    • v.20 no.2
    • /
    • pp.1-8
    • /
    • 2018
  • PURPOSES : In this study, design elements of rest areas for drowsy drivers are classified and appropriate criteria for each design element are presented. METHODS : By comparing and analyzing the design criteria for rest areas, the most appropriate installation criteria were suggested by considering the driving patterns of rest area users. RESULTS : As a result of the study, elements influencing the design of rest areas for drowsy drivers are suggested such as installation location and installation type. In addition, proper separation distance between resting areas was suggested considering vehicle flow, users' fatigue and physiological needs. Other criteria for rest areas were also suggested. CONCLUSIONS : Proper safety facilities were not installed in rest areas because appropriate criteria were not established. In this study, design elements were derived and installation criteria were designed so that rest areas could be used safely and conveniently.

A Study on Drowsy Driving Detection using SURF (SURF를 이용한 졸음운전 검출에 관한 연구)

  • Choi, Na-Ri;Choi, Ki-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.4
    • /
    • pp.131-143
    • /
    • 2012
  • In this paper, we propose a drowsy driver detection system with a novel eye state detection method that is adaptive to various vehicle environment such as glasses, light and so forth using SURF(Speed Up Robust Feature) which can extract quickly local features from images. Also the performance of eye state detection is improved as individual three eye-state templates of each driver can be made using Bayesian inference. The experimental results under various environment with average 98.1% and 96.1% detection rate in the daytime and at night respectively and those in the opened ZJU database with average 97.8% detection rate show that the proposed method outperforms the current state-of-the-art.

Learning Model for Avoiding Drowsy Driving with MoveNet and Dense Neural Network

  • Jinmo Yang;Janghwan Kim;R. Young Chul Kim;Kidu Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.142-148
    • /
    • 2023
  • In Modern days, Self-driving for modern people is an absolute necessity for transportation and many other reasons. Additionally, after the outbreak of COVID-19, driving by oneself is preferred over other means of transportation for the prevention of infection. However, due to the constant exposure to stressful situations and chronic fatigue one experiences from the work or the traffic to and from it, modern drivers often drive under drowsiness which can lead to serious accidents and fatality. To address this problem, we propose a drowsy driving prevention learning model which detects a driver's state of drowsiness. Furthermore, a method to sound a warning message after drowsiness detection is also presented. This is to use MoveNet to quickly and accurately extract the keypoints of the body of the driver and Dense Neural Network(DNN) to train on real-time driving behaviors, which then immediately warns if an abnormal drowsy posture is detected. With this method, we expect reduction in traffic accident and enhancement in overall traffic safety.

Study on Driver Condition Monitoring Using 77GHz In-cabin FMCW Radar (77GHz FMCW 인캐빈 레이다를 이용한 운전자 상태모니터링 시스템 연구)

  • Gyeong-Deok Ju;Myeong-Jun Oh;Yong-Myeong Kim;Yun-Seong Jol;Young-Bae Jung
    • Journal of IKEEE
    • /
    • v.28 no.3
    • /
    • pp.296-302
    • /
    • 2024
  • In this paper, we propose a driver condition monitoring system using FMCW in-cabin radar, which is free from wearing inconvenience and privacy issues. Using 77GHz high-precision radar, the system detects changes in eye blinking patterns according to changes in the driving environment and the driver's condition using an adaptive multiple filtering algorithm, and accurately determines drowsy driving by measuring the number of eye blinks and the time it takes to open and close the eyes through the detected data. With the emergence of high-performance radars that are becoming more and more miniaturized, it is possible to embed them in the instrument panel or rearview mirror of the vehicle, and if the driver is judged to be drowsy, it can wake up the driver through an alarm or interlock with the vehicle's driving system to slow down and make an emergency stop to prevent accidents and promote driver safety.

Development and usability evaluation of EEG measurement device for detect the driver's drowsiness (운전자의 졸음지표 감지를 위한 뇌파측정 장치 개발 및 유용성 평가)

  • Park, Mun-kyu;Lee, Chung-heon;An, Young-jun;Ji, Hoon;Lee, Dong-hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.947-950
    • /
    • 2015
  • In the cause of car accidents in Korea, drowsy driving has shown that it is larger fctors than drunk driving. Therefore, in order to prevent drowsy driving accidents, drowsiness detection and warning system for drivers has recently become a very important issue. Furthermore, Many researches have been published that measuring alpha wave of EEG signals is the effective way in order to be aware of drowsiness of drivers. In this study, we have developed EEG measuring device that applies a signal processing algorithm using the LabView program for detecting drowsiness. According to results of drowsiness inducement experiments for small test subjects, it was able to detect the pattern of EEG, which means drowsy state based on the changing of power spectrum, counterpart of alpha wave. After all, Comparing to the results of drowsiness pattern between commercial equipments and developed device, we could confirm acquiring similar pattern to drowsiness pattern. With this results, the driver's drowsiness prevention system expect that it will be able to contribute to lowering the death rate caused by drowsy driving accidents.

  • PDF

Development of a Sleep-driving Accident Prevention System based on pulse

  • Bae, Seung-Woo;Seo, Jung-Hwa
    • Korean Journal of Artificial Intelligence
    • /
    • v.6 no.1
    • /
    • pp.11-15
    • /
    • 2018
  • The purpose of this study is to develop a pulsatile drowsiness detection system that can compensate the limitations of existing camera - based or breathing pressure sensor based Drowsiness driving prevention systems. A heart rate sensor mounted on the driver's finger and an alarm system that sounds when drowsiness is detected. The heart rate sensor was used to measure pulse changes in the wrist, and an alarm system based on the Arduino, which works in conjunction with the laptop, generates an audible alarm in the event of drowsiness. In this paper, we assume that the pulse rate of the drowsy state is 60 ~ 65 times / minute, which is the middle between the awake state and the sleep state. As a result of the experiment, the alarm sounded when the driver's pulse rate was in the drowsy pulse rate range. Based on these experiments, the drowsiness detection system was able to detect the drowsiness of the driver successfully in real time. A more effective drowsiness prevention system can be developed in the future by incorporating the results of the present study on a pulse-based drowsiness prevention system in an existing drowsiness prevention system.

Drowsiness Driving Prevention System using Bone Conduction Device

  • Hahm, SangWoo;Park, Hyungwoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.9
    • /
    • pp.4518-4540
    • /
    • 2019
  • With the development of IT convergence technology, autonomous driving has gradually developed; however, the vehicle is still operated by the driver, who should always be in good health - but sometimes, this is not the case. It is especially dangerous to drive when drowsy, and unable to fully concentrate on driving, such as when taking certain medicines, or through fatigue. Drowsy driving is at least eight times more dangerous than normal driving, and as dangerous as drunk driving. Previous research has looked at technology to detect drowsiness, in order to wake up drivers when necessary, or to safely stop the vehicle. Furthermore, many studies have been conducted to find out when drowsiness occurs. However, it is more desirable for the driver to take sufficient rest during a break, in order to be able to continue to focus and drive. In other words, it is important to maintain a normal state before drowsiness. In this study, we introduce a sound source to increase driver concentration and prevent drowsiness, another that can improve the quality of sleep, and a system that produces these sound sources. The proposed system has a noise reduction effect of about 15 dB. We have confirmed that the proposed sound induces an EEG of the desired form.

Driver Drowsiness Detection System using Image Recognition and Bio-signals (영상 인식 및 생체 신호를 이용한 운전자 졸음 감지 시스템)

  • Lee, Min-Hye;Shin, Seong-Yoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.6
    • /
    • pp.859-864
    • /
    • 2022
  • Drowsy driving, one of the biggest causes of traffic accidents every year, is accompanied by various factors. As a general method to check whether or not there is drowsiness, a method of identifying a driver's expression and driving pattern, and a method of analyzing bio-signals are being studied. This paper proposes a driver fatigue detection system using deep learning technology and bio-signal measurement technology. As the first step in the proposed method, deep learning is used to detect the driver's eye shape, yawning presence, and body movement to detect drowsiness. In the second stage, it was designed to increase the accuracy of the system by identifying the driver's fatigue state using the pulse wave signal and body temperature. As a result of the experiment, it was possible to reliably determine the driver's drowsiness and fatigue in real-time images.

An Illumination-Robust Driver Monitoring System Based on Eyelid Movement Measurement (조명에 강인한 눈꺼풀 움직임 측정기반 운전자 감시 시스템)

  • Park, Il-Kwon;Kim, Kwang-Soo;Park, Sangcheol;Byun, Hye-Ran
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.3
    • /
    • pp.255-265
    • /
    • 2007
  • In this paper, we propose a new illumination-robust drowsy driver monitoring system with single CCD(Charge Coupled Device) camera for intelligent vehicle in the day and night. For this system that is monitoring driver's eyes during a driving, the eye detection and the measure of eyelid movement are the important preprocesses. Therefore, we propose efficient illumination compensation algorithm to improve the performance of eye detection and also eyelid movement measuring method for efficient drowsy detection in various illumination. For real-time application, Cascaded SVM (Cascaded Support Vector Machine) is applied as an efficient eye verification method in this system. Furthermore, in order to estimate the performance of the proposed algorithm, we collect video data about drivers under various illuminations in the day and night. Finally, we acquired average eye detection rate of over 98% about these own data, and PERCLOS(The percentage of eye-closed time during a period) are represented as drowsy detection results of the proposed system for the collected video data.

Efficient Driver Attention Monitoring Using Pre-Trained Deep Convolution Neural Network Models

  • Kim, JongBae
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.2
    • /
    • pp.119-128
    • /
    • 2022
  • Recently, due to the development of related technologies for autonomous vehicles, driving work is changing more safely. However, the development of support technologies for level 5 full autonomous driving is still insufficient. That is, even in the case of an autonomous vehicle, the driver needs to drive through forward attention while driving. In this paper, we propose a method to monitor driving tasks by recognizing driver behavior. The proposed method uses pre-trained deep convolutional neural network models to recognize whether the driver's face or body has unnecessary movement. The use of pre-trained Deep Convolitional Neural Network (DCNN) models enables high accuracy in relatively short time, and has the advantage of overcoming limitations in collecting a small number of driver behavior learning data. The proposed method can be applied to an intelligent vehicle safety driving support system, such as driver drowsy driving detection and abnormal driving detection.