• Title/Summary/Keyword: drought season

Search Result 188, Processing Time 0.022 seconds

A Rotational Irrigation Scheduling for an Irrigated Paddy Blocks with Operation Rule Curve (이수관리곡선에 의한 논 관개지구의 윤환관개모형)

  • 김태철;이재면;이덕주
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.5
    • /
    • pp.67-76
    • /
    • 2003
  • The principal operation rule of irrigation reservoir is to accelerate the water use and supply water actively when water is sufficient, and to restrict water use and supply water deficiently in order not to stop the irrigation activity when water is scarce. In drought seasons. water should be saved in order to keep the reservoir not to be dried up during the irrigation season. It is important to know how much water should be saved, depending on the rice-growing season and water storage volume. For the drought control of irrigation reservoirs. the rotational irrigation scheduling in paddy with the operation rule curve developed in this study could be utilized as a software program to install TM/TC system for irrigation water supply by automation facilities.

Study on Multiscale Analysis on Drought Characteristics

  • Uranchimeg, Sumiya;Kwon, Hyun Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.611-611
    • /
    • 2015
  • One of the hazard of nature is a drought. Its impact varies from region to region and it is difficult for people to understand and define due to differences in hydrometeorological and social economic aspects across much of the country. In the most general sense, drought originates from a deficiency of precipitation over an extended period of time, usually month, season or more, resulting in a water shortage for some activity, group, or environmental sector. Palmer Drought Severity Index (PDSI) is well known and has been used to study aridity changes in modern and past climates. The PDSI index is estimated over US using USHCN historical data.(e.g. precipitation, temperature, latitude and soil moisture). In this study, low frequency drought variability associated with climate variability such as El-Nino and ENSO is mainly investigated. With respect to the multi-scale analysis, wavelet transform analysis is applied to the PDSI index in order to extract the low frequency band corresponding to 2-8 years. Finally, low frequency patterns associated with drought by comparing global wavelet power, with significance test are explored.

  • PDF

An Outlook of Agricultural Drought in Jeonju Area under the RCP8.5 Projected Climate Condition (기후변화 시나리오에 근거한 전주지역의 농업가뭄 전망)

  • Kim, Dae-jun;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.4
    • /
    • pp.275-280
    • /
    • 2015
  • In order to figure out the future drought characteristics of the Jeonju plains, the major crop production area in Korea, daily agricultural drought indexes based on soil water balance were calculated for the relevant 12.5 km by 12.5 km grid cell using the weather data generated by the RCP8.5 climate scenario during 1951-2100. The calculations were grouped into five climatological normal years, the past (1951-1980), the present (1981-2010), and the three futures (2011-2040, 2041-2070, and 2071-2100). Results showed that the soil moisture conditions in early spring, worst for both the past and present normal years, will ameliorate gradually in the future and the crop water stress in spring season was projected to become negligible by the end of this century. Furthermore, the drought frequency in early spring was projected to diminish, resulting in rare occurrence of spring drought by that time. However, the result also showed that the soil moisture conditions during the summer season (when most crops grow in Jeonju plain) will deteriorate and the drought incidence will be more frequent than in the past or present period.

Comparison of Surface Water and Groundwater Responses to Drought using the Standardized Precipitation Index (SPI) (표준강수지수(SPI)를 이용한 가뭄에 대한 지표수와 지하수 반응 비교)

  • Koo, Min-Ho;Kim, Wonkyeom;Song, Sung-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.5
    • /
    • pp.1-9
    • /
    • 2022
  • A correlation analysis was performed to investigate differences in the response of surface water and groundwater to drought using the Standardized Precipitation Index (SPI). Water level data of 20 agricultural reservoirs, 4 dams, 2 rivers, and 8 groundwater observation wells were used for the analysis. SPI was calculated using precipitation data measured at a nearby meteorological station. The water storage of reservoirs and dams decreased significantly as they responded sensitively to the drought from 2014 to 2016, showing high correlation with SPI of the relatively long accumulation period (AP). The responses of rivers varied greatly depending on the presence of an upstream dam. The water level in rivers connected to an upstream dam was predominantly influenced by the dam discharge, resulting in very weak correlation with SPI. On the contrary, the rivers without dam exhibited a sharp water level rise in response to precipitation, showing higher correlation with SPI of a short-term AP. Unlike dams and reservoirs, the responses of groundwater levels to precipitation were very short-lived, and they did not show high correlation with SPI during the long-term drought. In drought years, the rise of groundwater level in the rainy season was small, and the lowered water level in the dry season did not proceed any further and was maintained at almost the same as that of other normal years. Conclusively, it is confirmed that groundwater is likely to persist longer than surface water even in the long-term drought years.

Analysis of the Possibility for Practical Use of MSI/ MidIR/ II Vegetation Indices for Drought Detection of Spring Season (MSI/ MidIR/ II 식생지수를 이용한 봄 가뭄탐지 활용 가능성 분석)

  • Kim, Sung-Jae;Choi, Kyung-Sook;Chang, Eun-Mi;Hong, Seong-Wook
    • Spatial Information Research
    • /
    • v.19 no.5
    • /
    • pp.37-46
    • /
    • 2011
  • In recent years, utilizations of satellite imagery have been extensively conducted in order to obtain accurate information on drought detection in spring season. This research also carried out utilization of satellite imagery through the various vegetation indices such as NDVI(Normalized Difference Vegeation Index), MSI(Moisture Stress Index), MidIR Index, II(Infrared Index) to find better methodology to detect drought phenomena, especially occurring in spring season. For this purpose, Landsat TM(Thematic Mapper) images were used and applied on the Yeong-cheon city. In this study, the characteristics of DN(Digital Number) for each vegetation index is analyzed, and the correlation analysis between indices and DN according to the number of days with no rain is performed. The results shows high correlation between NDVI and MSI and II with positive correlation on MSI, and negative correlation on II. This indicates the possibility for practical use of MSI, II indices with NDVI to obtain better credibility for detecting spring droughts.

Performance of Three Warm Season Turfgrasses under Linear Gradient Irrigation

  • Ow, Lai Fern;Ghosh, Subhadip
    • Weed & Turfgrass Science
    • /
    • v.6 no.1
    • /
    • pp.61-66
    • /
    • 2017
  • The appropriate level of irrigation for turfgrasses is vital to the performance of the turfgrass as well as conservation of water. Linear gradient irrigation system (LGIS) facilitates long-term study of turf performance under continuous irrigation gradients at extreme ends of the irrigation scale. The objectives of this study were to: a) determine the minimum irrigation requirements and relative drought resistance in three warm season turfgrasses; and b) evaluate the medium to long-term effects of irrigation levels on turf persistence, weed invasion, and susceptibility to diseases. Results suggest that grasses differed in drought resistance and persistence under variable irrigation regimes. Irrigation (Ep) required for consistent acceptable turf quality for respective grasses was Cynodon dactylon x C. transvaalensis (61%), Zoysia matrella L. Merr (73%), and Stenotaphrum secundatum 'Palmetto' (86%). Brown patch infection was most prevalent in Stenotaphrum secundatum 'Palmetto' at 12 and 125% Ep irrigation. Cynodon dactylon x C. transvaalensis and Zoysia matrella L. Merr were better able to adapt to the various irrigation regimes, and this ability allowed these species to resist drought, and maintain turf coverage which in turn, kept weeds and the occurrence of diseases at bay. Ranking these grasses for their drought tolerance abilities showed that Cynodon dactylon x C. transvaalensis had the most outstanding resistance against drought, followed by Zoysia matrella L. Merr, and lastly, Stenotaphrum secundatum 'Palmetto'. Despite having the highest irrigation requirement, Stenotaphrum secundatum 'Palmetto' was still not able to maintain persistence at high irrigation regimes. Likewise, this grass also lost turf coverage at low irrigation levels.

Drought Monitoring for Paddy Fields Using Satellite-derived Evaporative Stress Index (위성영상기반 증발스트레스지수를 활용한 필지단위 논 가뭄 모니터링)

  • Lee, Hee-Jin;Nam, Won-Ho;Yoon, Dong-Hyun;Kim, Ha-Young;Woo, Seung-Beom;Kim, Dae-Eui
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.3
    • /
    • pp.47-57
    • /
    • 2021
  • Drought monitoring over paddy field area is an important role as the frequency and intensity of drought due to climate change increases. This study analyzed the applicability of drought monitoring on paddy crops using MODIS-based field surveys. As a satellite-based drought index using evapotranspiration for quantitative drought determination, ESI (Evaporative Stress Index), was applied and calculated through the ratio of MODIS- based actual and potential evapotranspiration. For the irrigated areas of Idong, Gosam, Geumgwang, and Madun reservoirs the availability of irrigation water supply, ponding depth, precipitation, paddy growth were investigated for the paddy field within one grid of MODIS. In addition, the percentile-based ESI drought severity was calculated to compare the growth process of paddy and changes in the drought category of ESI. The Idong area was irrigated about a week later than other reservoirs for the period of water supply, transplanting, and water drainage and the ESI drought category tended to be different. The Gosam, Geumgwang, and Madun area expressed moderate drought prior to the farming season, and indicated normal as the water was supplied. During the water drainage, the drought category intensified, indicating that the water available on land was decreasing. These results demonstrated that the MODIS-based ESI could be an effective tool for agricultural drought monitoring over paddy field area.

Assessment of Agricultural Drought Vulnerability Focus on Drought Response Capability in Irrigation Facilities and Paddy Fields (수리시설물 및 농경지 가뭄대응능력 중심의 농업가뭄 취약성 평가 - 태안 지역을 중심으로 -)

  • Mun, Young-Sik;Nam, Won-Ho;Ha, Tae-Hyun;Jo, Young-Jun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.5
    • /
    • pp.13-24
    • /
    • 2023
  • Due to recent climate change, the amount of rainfall during the summer season in South Korea has been decreasing, leading to an increase in areas affected by frequent droughts. Droughts have the characteristic of occurring over a wide area and being unpredictable in terms of their onset and end, necessitating proactive research to cope with them. In this study, we conducted an assessment of agricultural drought vulnerability in Taean-gun, Chungcheongnam-do, focusing on irrigation facilities and paddy fields. The assessment criteria were meteorological impact, drought occurrence status, supplementary water supply capacity, and drought response capability, with nine specific indicators selected. The drought response capability was analyzed by applying a scoring system as a key component of the agricultural drought vulnerability assessment, while the other indicators were quantified using an entropy weighting technique. The results of the assessment showed that Anmyeon-eup and Taean-eup were the safest areas, while Wonbuk-myeon, Nam-myeon, and Gonam-myeon were the most vulnerable. It is expected that the findings can be utilized to enhance understanding and proactive measures for coping with agricultural drought, and to determine the priority of drought response in different regions.

Variations of glucosinolates in kale leaves (Brassica oleracea var. acephala) treated with drought-stress in autumn and spring seasons (수분스트레스에 의한 케일 내 글루코시놀레이트 변화)

  • Jeong, Na-Rae;Chun, Jin-Hyuk;Park, Eun-Jae;Lim, Ye-Hoon;Kim, Sun-Ju
    • Korean Journal of Agricultural Science
    • /
    • v.42 no.3
    • /
    • pp.167-175
    • /
    • 2015
  • The present study aimed to investigate the effects of drought stress on the accumulation of glucosinolates (GSLs) in the leaves of Kale cultivated in autumn and spring. HPLC analysis guided to identify seven GSLs including progoitrin, glucoraphanin, sinigrin, gluconapin, glucobrassicin, 4-methoxyglucobrassicin and neoglucobrasscin. Quantification of GSLs revealed that the contents of sigirin was the highest (45%) followed by the level of progoitrin (24%) in terms of total GSLs. The ranges of total GSL contents was 1.16 (84)-15.88 (89 DAS, ${\mu}mol/g$ dry wt. (DW)) in treatment plot and 1.23 (84)-7.05 (74 DAS, ${\mu}mol/g$ dry wt.) in control plot showed the enhancement in the contents of GSLs in treatment than in the control plot. The present results evidenced that the variation of total GSL contents were depending on the harvest period. In 105 DAS, comparatively no differences in the GSL contents on each sample in autumn season, whereas in spring season, although there was decrease in the GSLs tendency from 74 DAS to 84 DAS in both control and treatment plot, the GSL contents of treatment plot was dramatically increased in 89 DAS. In treatment plot, the GSL contents on 89 DAS (1.16) was 15 fold higher to 84 DAS ($15.88{\mu}mol/g$ DW). The variation in the contents of GSL in spring and autumn did not documented significant differences because of their differences in the growth time and cultivation conditions. In conclusion, the GSL contents in kale was likely to be affected by drought stress treatment. Scrutiny and further research for exact relation between drought stress and GSL contents in kale should be needed.

Revealing Geography of Water in Taebaek City through Actor-Network Theory (행위자-연결망 이론을 통해서 본 태백시 물 공급의 지리학)

  • Kim, Na Hyeung;Kim, Sook-Jin
    • Journal of the Korean Geographical Society
    • /
    • v.48 no.3
    • /
    • pp.366-386
    • /
    • 2013
  • This paper analyzes the drought and restriction on water supply in Taebaek City during the winter season in 2008 using Actor-Network Theory. Actor-Network Theory emphasizes and brings into view the role and act of non-human actors as well as human actors in various environmental issues. The fact that only Taebaek experienced restriction on water supply for 88 days although the winter season drought in 2008 affected the whole nation, requires a synthetic analysis of both human and non-human actors and their relationships and networks embedded in Taebaek City at that time. This paper shows that both human and non-human actors including Taebaek City Hall, Korea Water Resource Corporation, Taebaek citizen, the water supply facilities, Gwangdongdam, obsolete water pipes, the topography of Taebaek, soil, the change of industry, and population interact one another transforming the geography of water in Taebaek. This study helps to understand the complex processes related to drought disasters at a specific local scale and to provide appropriate measures to drought.

  • PDF