• Title/Summary/Keyword: drought events

Search Result 172, Processing Time 0.022 seconds

Assessment for Characteristics and Variations of Upland Drought by Correlation Analysis in Soil Available Water Content with Meteorological Variables and Spatial Distribution during Soybean Cultivation Period (토양유효수분율 공간분포와 기상인자와의 상관관계 분석을 통한 콩 재배기간 밭가뭄 특성 및 변동성 평가)

  • Se-In Lee;Jung-hun Ok;Seung-oh Hur;Bu-yeong Oh;Jeong-woo Son;Seon-ah Hwang
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.26 no.2
    • /
    • pp.127-139
    • /
    • 2024
  • Climate change has increased extreme weather events likewise heatwaves, heavy rain, and drought. Unlike other natural disaster, drought is a slowly developing phenomenon and thus drought damage increases as the drought continues. Therefore, it is necessary to understand the characteristics and mechanism of drought occurrence. Agricultural drought occurs when the water supply needed by crops becomes insufficient due to lack of soil water. Therefore, soil water is used as a key variable affecting agricultural drought. In this study, we examined the spatio-temporal distribution and trends of drought across the Korean Peninsula by determining the soil available water content (SAWC) through a model that integrated soil, meteorological, and crop data. Moreover, an investigation into the correlation between meteorological variables and the SAWC was conducted to assess how meteorological characteristics influence the nature of drought occurrences. During the soybean cultivation period, the average SAWC was lowest in 2018 at 88.6% and highest in 2021 at 103.2%. Analysis of the spatial distribution of SAWC by growth stage revealed that the lowest SAWC occurred during the flowering stage (S3) in 2018, during the leaf extension stage (S2) in 2019, during the seedling stage (S1) in 2020, again during the flowering stage (S3) in 2021, and during the seedling stage (S1) in 2022. Based on the average SAWC across different growth stages, the frequency of upland drought was the highest at 22 times during the S3 in 2018. The lowest SAWC was primarily influenced by a significant negative correlation with rainfall and evapotranspiration, whereas the highest SAWC showed a significant positive correlation with rainfall and relative humidity, and a significant negative correlation with reference evapotranspiration.

Development of Storage Management System for Small Dams (소규모 댐의 저수관리 시스템 개발)

  • Kim, Phil-Shik;Kim, Sun-Joo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.3
    • /
    • pp.15-25
    • /
    • 2005
  • Ninety tow percent of over 1,800 gate controlled dams in Korea are classified as small dams. The primary purpose of these small dams is to supply irrigation water. Therefore, while large dams can store as much as 80 percent of precipitation and thus are efficient to control flood, small dams are often lack of flood control function resulting in increased susceptibility drought and flood events. The purpose of this study is to develope a storage management model for irrigation dams occupying the largest portion of small dams. The proposed Storage Management Model (STMM) can be applied to the Seongju dam for efficient management. Besides, the operation standard is capable of analyzing additional available water, considering water demand and supply conditions of watershed realistically. And the model can improve the flood control capacity and water utilization efficiency by the flexible operation of storage space. Consequently, if the small dams are managed by the proposed Storage management model, it is possible to maximize water resources securance and minimize drought and flood damages.

Reproduction Strategies of Clonal Plants of Potentilla conferta in Uzbekistan and Mongol

  • Huh, Man-Kyu;Lee, Byeong-Ryong
    • Journal of Environmental Science International
    • /
    • v.21 no.11
    • /
    • pp.1297-1305
    • /
    • 2012
  • Clonal plants combine sexual and clonal reproduction, which contribute differently to plant fitness. Reproductive analyses have highlighted the importance of clonal growth in shaping the spatial genetic structure in Potentilla conferta Bunge, a herbaceous rhizomatic clonal distributed in hot sand dunes. We investigated the reproduction system of P. conferta at two populations in Mongol and three natural populations in Uzbekistan. The measurements of 19 quantitative or qualitative morphological characters were taken on each of total individuals directly from their natural habitats. Some morphological characteristics between Mongolia and Uzbekistan populations showed a slight heterogeneity of variance. Especially, the length of internodes (LFI and LSI) and characteristics of root (LLR and NOR) were shown a significant difference between two countries (P<0.05). P. conferta of Uzbekistan has most ramets at short distance intervals 30~100 cm. In light conditions, P. conferta of Uzbekistan was significantly less resilience than P. conferta of Mogol. In drought conditions, although there was not shown significant difference, P. conferta in Uzbekistan was less resilience than that in Mogol. The core analysis indicates that P. conferta in Uzbekistan is the more resistant than that of Mongol and seems to do by sexual reproduction strategy during several strong environmental disadvantages such as drought events.

Molecular cloning and characterization of a soybean GmMBY184 induced by abiotic stresses

  • Chung, Eun-Sook;Kim, Koung-Mee;Lee, Jai-Heon
    • Journal of Plant Biotechnology
    • /
    • v.39 no.3
    • /
    • pp.175-181
    • /
    • 2012
  • Drought and high salinity stresses often imposes adverse effects on crop yield. MYB transcription factors have been shown to be an important regulator in defense responses to these environmental stresses. In this study, we have cloned and characterized a soybean gene GmMYB184 (Glycine max MYB transcription factor 184). Deduced amino acid sequences of GmMYB184 show highest homology with that from Vitis vinifera legume plant (75%). Different expression patterns of GmMYB184 mRNA were observed subjected to drought, cold, high salinity stress and abscisic acid treatment, suggesting its role in the signaling events in the osmotic stress-related defense response. Subcellular localization studies demonstrated that the GFP-GmMYB184 fusion protein was localized in the nucleus. Using the yeast assay system, the C-terminal region of GmMYB184 was found to be essential for the transactivation activity. These results indicate that the GmMYB184 may play a role in abiotic stress tolerance in plant.

Analysis of Irrigation Water Amount Variability based on Crops and Soil Physical Properties Using the IWMM Model (IWMM 모형을 이용한 작물과 토양의 물리적 특성에 따른 관개용수량 변동 특성 분석)

  • Shin, Yongchu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.2
    • /
    • pp.37-47
    • /
    • 2017
  • In this study, we analyzed the variability of irrigation water amounts based on the combination of various crops and soil textures using the Irrigation Water Management Model (IWMM). IWMM evaluates the degree of agricultural drought using the Soil Moisture Deficit Index (SMDI). When crops are damaged by the water scarcity under the drought condition indicating that the SMDI values are in negative (SMDI<0), IWMM irrigates appropriate water amounts that can shift the negative SMDI values to "0" to crop fields. To test the IWMM model, we selected the Bandong-ri (BDR) and Jucheon (JC) sites in Gangwon-do and Jeollabuk-do provinces. We derived the soil hydraulic properties using the near-surface data assimilation scheme form the Time Domain Reflectrometry (TDR)-based soil moisture measurements. The daily root zone soil moisture dynamics (R: 0.792/0.588 and RMSE: 0.013/0.018 for BDR/JC) estimated by the derived soil parameters were matched well with the TDR-based measurements for validation. During the long-term (2001~2015) period, IWMM irrigated the minimum water amounts to crop fields, while there were no irrigation events during the rainy days. Also, Sandy Loam (SL) and Silt (Si) soils require more irrigation water amounts than others, while the irrigation water were higher in the order of radish, wheat, soybean, and potato, respectively. Thus, the IWMM model can provide efficient irrigation water amounts to crop fields and be useful for regions at where limited water resources are available.

Impact of Elevated Carbon Dioxide, Temperature, and Drought on Potato Canopy Architecture and Change in Macronutrients (상승된 이산화탄소와 온도 그리고 한발 영향에 따른 감자의 군락 형태와 무기영양 변화)

  • Lee, Yun-Ho;Cho, Hyeoun-Suk;Kim, Jun-Hwan;Sang, Wan-Gyu;Shin, Pyong;Baek, Jae-Kyeong;Seo, Myung-Chul
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.63 no.2
    • /
    • pp.164-173
    • /
    • 2018
  • Elevated atmospheric carbon dioxide concentration ($CO_2$) is a major component of climate change, and this increase can be expected to continue into the crop and food security in the future. In this study, Soil-Plant-Atmosphere-Research (SPAR) chambers were used to examine the effect of elevated $CO_2$, temperature, and drought on the canopy architecture and concentration of macronutrients in potatoes (Solanum tuberosum L.). Drought stress treatments were imposed on potato plants 40 days after emergence. Under AT+2.8C700 (30-year average temperature + $2.8^{\circ}C$ at $700{\mu}mol\;mol^{-1}$ of $CO_2$), at maximum leaf area, elevated $CO_2$, and no drought stress, a significant increase was observed in both the aboveground biomass and tuber, and for the developmental stage. Even though $CO_2$ and temperature had increased, AT+2.8C700DS (30-year average temperature + $2.8^{\circ}C$ at $700{\mu}mol\;mol^{-1}$ of $CO_2$ under drought stress) under drought stress showed that the leaf area index (LAI) and dry weight were reduced by drought stress. At maturity, potatoes grown under $CO_2$ enrichment and no drought stress exhibited significantly lower concentrations of N and P in their leaves, and of N, P, and K in tubers under AT+2.8C700. In contrast, elevated $CO_2$ and drought stress tended to increase the tuber Mg concentration under AT+2.8C700DS. Plants grown in AT+2.8C700 had lower protein contents than plants grown under ATC450 (30-year average temperature at $400{\mu}mol\;mol^{-1}$ of $CO_2$). However, plants grown under AT+2.8C700 showed higher tuber bulking than those grown under AT+2.8C700DS. These findings suggest that the increase in $CO_2$ concentrations and drought events in the future are likely to decrease the macronutrients and protein concentrations in potatoes, which are important for the human diet.

Development of Mid-range Forecast Models of Forest Fire Risk Using Machine Learning (기계학습 기반의 산불위험 중기예보 모델 개발)

  • Park, Sumin;Son, Bokyung;Im, Jungho;Kang, Yoojin;Kwon, Chungeun;Kim, Sungyong
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_2
    • /
    • pp.781-791
    • /
    • 2022
  • It is crucial to provide forest fire risk forecast information to minimize forest fire-related losses. In this research, forecast models of forest fire risk at a mid-range (with lead times up to 7 days) scale were developed considering past, present and future conditions (i.e., forest fire risk, drought, and weather) through random forest machine learning over South Korea. The models were developed using weather forecast data from the Global Data Assessment and Prediction System, historical and current Fire Risk Index (FRI) information, and environmental factors (i.e., elevation, forest fire hazard index, and drought index). Three schemes were examined: scheme 1 using historical values of FRI and drought index, scheme 2 using historical values of FRI only, and scheme 3 using the temporal patterns of FRI and drought index. The models showed high accuracy (Pearson correlation coefficient >0.8, relative root mean square error <10%), regardless of the lead times, resulting in a good agreement with actual forest fire events. The use of the historical FRI itself as an input variable rather than the trend of the historical FRI produced more accurate results, regardless of the drought index used.

Measure Improvement on Vulnerable Area based on Climate Change Impact on Agriculture Infrastructure (기후변화에 따른 농업생산기반시설 영향분석을 통한 정책추진 방안 연구)

  • Jeong, Kyung-Hun;Song, Suk-Ho;Jung, Hyoung-Mo;Oh, Seung-Heon;Kim, Soo-Jin;Lim, Se-Yun;Joo, Dong-Hyuk;Hwang, Syewoon;Jang, Min-Won;Bae, Seung-Jong;Yoo, Seung-Hwan
    • Journal of Korean Society of Rural Planning
    • /
    • v.26 no.4
    • /
    • pp.81-91
    • /
    • 2020
  • This study was conducted to analyse climate change impact on agriculture infrastructure and propose improved measures on vulnerable areas. Recently, Climate change has resulted in damaging effects on agricultural fields through increases in drought intensity and flood risk. It is expected that this impact will increase over time. This study shows that Gyeong-gi and Chung-nam provinces are affected by drought and Gyeong-buk and Gyeong-nam provinces are affected by heavy rain. However, there are also regional variations within each province. Agricultural infrastructure affected by drought may also be affected by heavy rain. Increased damages on the infrastructure due to increased extreme weather events require preventive measures especially in vulnerable areas. In order to minimize the damage by climate change, we need to introduce a reform in the system which selects project region by analysing climate change impacts. Furthermore, impact assessment of climate change from projects such as 'water supply diversification', 'flooded farmland improvement', and 'irrigation facility reinforcement' also need to be adopted to improve the measures. The results of this study are expected to provide a foundation for establishing measures on coping with climate change in the agricultural sector.

Prototyping of Community Mapping for Enabling Response to Urban Flood

  • Koo, Jee Hee;Jeon, Min Cheol;Kim, Sun Woong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.1
    • /
    • pp.63-71
    • /
    • 2017
  • Recently, there has been growing interest in public participation GIS (Geographic Information System) technology that enables spontaneous public response to increasingly frequent flood and drought events. Accordingly, social and economic demands are increasing on portal services that are designed to help cope with natural hazards such as earthquakes. By focusing on a specific hazard, urban flood, this study designed a prototype of a disaster response portal and its service system. The community map developed in this study is focused on prevention and mitigation of the urban flood damage by analyzing the vulnerable areas, and providing effective means to inspect the roads and sewer systems. By considering the compatibility with VGI (Volunteered Geographic Information) portals, the study created a system environment by employing universally used open-source software programs such as Apache Tomcat, GeoServer, GeoNetwork, and PostgreSQL/PostGIS.

System Development for the estimation of Pollutant Loads on Reservoir

  • Shim, Soon-Bo;Lee, Yo-Sang;Koh, Deuk-Koo
    • Korean Journal of Hydrosciences
    • /
    • v.10
    • /
    • pp.35-46
    • /
    • 1999
  • An integrated system of GIS and water quality model was suggested including the pollutant loads from the watershed. The developed system consits of two parts. First part is the information on landuse and several surface factors concerning the overland flow processes of water and pollutants. Second part is the modeling modules which include storm event pollutant load model(SEPLM), non-storm event pollutant load model(NSPLM), and river water quality simulation model(RWQSM). Models can calculate the pollutant load from the study area. The databases and models are linked through the interface modules resided in the overall system, which incorporate the graphical display modules and the operating scheme for the optimal use of the system. The developed system was applied to the Chungju multi-purpose reservoir to estimate the pollutant load during the four selected rainfall events between 1991 and 1993, based upon monthly basis and seasonal basis in drought flow, low flow, normal flow and wet flow.

  • PDF