• Title/Summary/Keyword: dross residue

Search Result 7, Processing Time 0.022 seconds

Preparation of Castable Refractories by Recycling of Aluminum Dross (알루미늄드로스를 재활용한 캐스타블내화물 제조)

  • Park Hyungkyu;Lee Hooin;Lee Jinyoung
    • Resources Recycling
    • /
    • v.12 no.3
    • /
    • pp.46-53
    • /
    • 2003
  • Recycling of aluminum dross is an important issue in the secondary aluminum industries. In this study, aluminum dross generated in the domestic secondary aluminum industry was processed to use it as raw material for producing alumina refractories. Sample dross was classified according to its size. The dross smaller than 1 mm was leached with sodium hydroxide solution to extract the remained aluminum from the dross into the solution. and then aluminum hydroxide precipitate was recovered from the leach liquor. The waste residue in the leaching was washed, dried and roasted. Most remained metallic components in the residue was changed into oxide through the processes. The roasted dross was made into alumina castable refractories by mixing with aggregates and a binder. Bending strength of the tested castable specimen was over $25\;kg/\textrm{m}^2$ and compressive strength over $80\;kg/\textrm{cm}^2$, which satisfied the Korean Standard value respectively. From the results, it was suggested that this process could be applicable to recycling of aluminum dross.

Test Run of Pilot Plant for Recycling of the Leached Residue in the Processing of Waste Aluminum Dross (알루미늄 폐드로스 침출잔사 처리 파일롯트 플랜트 시운전 결과)

  • 박형규;이후인
    • Resources Recycling
    • /
    • v.13 no.3
    • /
    • pp.50-57
    • /
    • 2004
  • Waste aluminum dross is a major waste in the aluminum scrap smelters and its components are mostly alumina and remained metallic aluminum. In the process to extract the remained aluminum from the waste dross by leaching with sodium hydroxide solution, residue is generated and its main component is alumina. This residue could be recycled into ceramic materials such as alumina castable refractories by going through a series of treatments such as washing, drying and roasting. In this study, a pilot plant was constructed and tested to demonstrate the developed technology. One thousand tons of waste aluminum dross could be processed, and about seven hundred tons of ceramic materials produced in the demonstration line. From the test run of the pilot plant, although it was confirmed that the developed technology could be applied to commercialization, several technical improvements were found to be necessary for reducing impurities such as Na, Fe and for reforming drying equipment.

Test Run of the Pilot Plant for Recycling of the Waste Aluminum Dross (알루미늄 페드로스 재활용 파일롯트플랜트 시운전 결과)

  • Park, Hyung-Kyu;Lee, Hoo-In;Choi, Young-Yoon
    • Resources Recycling
    • /
    • v.14 no.4 s.66
    • /
    • pp.41-46
    • /
    • 2005
  • Waste aluminum dross is a major waste in the aluminum scrap smelters and its major components are alumina and metallic aluminum. In this study, waste aluminum dross was leached with sodium hydroxide solution to extract the remained aluminum into the solution, and aluminum hydroxide was recovered from the leached solution. The dross residue generated at the leaching step was recycled into alumina base ceramic materials through a series of treatments such as washing, drying and roasting. Also, a pilot plant was constructed and tested to demonstrate the developed technology. Four tons of waste aluminum dross could be processed per day. From the test run of the pilot plant, it was confirmed that the developed technology could be applied to commercialization.

Treatment of Black Dross with Water and NaOH Solution (물과 수산화나트륨용액에 의한 블랙 드로스의 처리)

  • Xing, Wei Dong;Ahn, Byung Doo;Lee, Man Seung
    • Resources Recycling
    • /
    • v.26 no.3
    • /
    • pp.53-60
    • /
    • 2017
  • Black dross contains metallic aluminium, alumina, silica, MgO, soluble salts together with minor ingredients. Control of silica in black dross is important in transforming the black dross into usable materials. First, most of the soluble salts (KCl and NaCl) in black dross were dissolved in water at reaction temperature of $50^{\circ}C$. Leaching behavior of silica, alumina, MgO and $TiO_2$ from the residue after water treatment was investigated by varying NaOH concentration and reaction temperature. Reaction temperature ($25{\sim}95^{\circ}C$) was favorable to the leaching of alumina but an optimum temperature existed for silica. MgO was not dissolved at all in the NaOH concentration range from 2 to 6 M. At the leaching condition of 5 M NaOH and reaction temperature of $95^{\circ}C$, approximately 80% of alumina and 68% of silica was dissolved.

The Preparation of porous ceramic material from aluminum waste dross (알루미늄 廢드로스를 活用한 세라믹 多孔體의 製造)

  • Kim, Ki-Seok;Park, Jay-Hyun;Park, Jai-Koo
    • Resources Recycling
    • /
    • v.14 no.2
    • /
    • pp.19-27
    • /
    • 2005
  • The recycling possibility of aluminum waste dross(AWD) as a ceramic raw material of porous light-weight material was examined. A aluminum waste dross was washed 4-7 consecutive times and roasted at 900$^{\circ}% for 1hour as pre-treatments. The properties of the pre-treatment of aluminum waste dross was investigated. It was conformed by XRD result that the spinel crystalline was grown in AWD, after roasting. After the roasted AWD was ground in aqueous state, the sodium hexaphosphate(SHP) as a dispersant which is used for stabilizing the concentrated slurry was added to the AWD slurry. The porous material was prepared by slurry foaming method with surfactant at room temperature. The foamed slurry volumes were 2 and 3 times of the original slurry volume. The properties of porous material with extended volume of 3 times was following: the porosity was about 84%, bulk density was 0.59 g/cm$^3$, the range of pore was from 50 ${\mu}m$ to 500 ${\mu}m$ and mean pore size was about 200 ${\mu}m$. AWD porous material was sintered at 1150$^{\circ}C-1250$^{\circ}C. It was colcluded that AWD was sintered well at 1200$^{\circ}C from material surface observation by SEM.

Pilot Plant Test for Recycling of the Leached Residue in Processing of Waste Aluminum Dross (알루미늄폐드로스 잔사처리 파일릇트플랜트 시험)

  • Park, Hyung-Kyu;Lee, Hoo-In
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2004.05a
    • /
    • pp.128-132
    • /
    • 2004
  • 알루미늄 폐드로스 내에 잔류하는 금속 알루미늄을 수산화나트륨용액으로 침출, 분리시켜서 수산화알루미늄으로 제조하는 과정에서 침출잔사가 발생된다. 본 연구에서는 이 침출잔사를 세척, 건조, 배소하여 알루미나질 캐스타블 내화물과 같은 세라믹 원료로 재활용하는 연구를 수행하였으며, 상용화를 위하여 파일롯트 플랜트 시험을 수행하였다. 시험 생산라인은 년간 1,000톤의 폐드로스를 처리하여 약 700톤의 세라믹 원료를 생산할 수 있는 규모이다. 생산라인의 시운전 결과 상용화를 위해서는 건조기의 개선이 필요하고, Na, Fe 등 불순 성분들이 시료에 유입되는 것을 줄여야 하는 문제점들을 파악할 수 있었으며, 개발한 기술의 상용화 적용 가능성을 확인할 수 있었다.

  • PDF

The Study on Micro Soldering Using Low-Residue Flux in $N_2$Atmosphere (질소 분위기에서 저잔사 플럭스를 사용한 마이크로 솔더링에 관한 연구)

  • 최명기;정재필;이창배;서창제;황선효
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.4
    • /
    • pp.7-15
    • /
    • 2000
  • The purpose of this work is to evaluate the solderahility and characteristics of solder joints. Bridge defect of solder joint was examined in natural atmosphere and $N_2$ condition. Consequently, wettability was excellent for each of Sn-Pb plated Cu specimen, Sn plated Cu specimen, and Cu polished in $N_2$ condition. The wetting time in $N_2$ condition was shorter than that of natural atmosphere condition, showing the decreasing values of about 0.2~0.45 seconds. The max. wetting force under the $N_2$ condition was more increasing that of natural atmosphere condition, showing the increasing values of about 1.8~2.8 N. With the result of wetting balance test, the wetting time ($t_2$) and wetting farce according to increasing amount of $N_2$ from 10 1/min to 30 1/min, the wetting time ($t_2$) was reduced about 0.25 second and wetting force was increased about 2.3 N. In non-cleaning flux, when $N_2$ gas is applied, it is compensated to decrease of wettability. In the case of using the $N_2$ gas, the wettability was improved. The reason for improving wettability is due to preventing the formation of dross. The generation rate of bridge in $N_2$ condition decreased than that of natural atmosphere, and when the specimen had a fine pitch, the rate of bridge defects was considerably decreased in $N_2$ condition, showing the decreasing rate of 25~75%.

  • PDF