• Title/Summary/Keyword: dropwindsonde observation

Search Result 2, Processing Time 0.015 seconds

The Effects of Typhoon Initialization and Dropwindsonde Data Assimilation on Direct and Indirect Heavy Rainfall Simulation in WRF model

  • Lee, Ji-Woo
    • Journal of the Korean earth science society
    • /
    • v.36 no.5
    • /
    • pp.460-475
    • /
    • 2015
  • A number of heavy rainfall events on the Korean Peninsula are indirectly influenced by tropical cyclones (TCs) when they are located in southeastern China. In this study, a heavy rainfall case in the middle Korean region is selected to examine the influence of typhoon simulation performance on predictability of remote rainfall over Korea as well as direct rainfall over Taiwan. Four different numerical experiments are conducted using Weather Research and Forecasting (WRF) model, toggling on and off two different improvements on typhoon in the model initial condition (IC), which are TC bogussing initialization and dropwindsonde observation data assimilation (DA). The Geophysical Fluid Dynamics Laboratory TC initialization algorithm is implemented to generate the bogused vortex instead of the initial typhoon, while the airborne observation obtained from dropwindsonde is applied by WRF Three-dimensional variational data assimilation. Results show that use of both TC initialization and DA improves predictability of TC track as well as rainfall over Korea and Taiwan. Without any of IC improvement usage, the intensity of TC is underestimated during the simulation. Using TC initialization alone improves simulation of direct rainfall but not of indirect rainfall, while using DA alone has a negative impact on the TC track forecast. This study confirms that the well-suited TC simulation over southeastern China improves remote rainfall predictability over Korea as well as TC direct rainfall over Taiwan.

The Observing System Research and Predictability Experiment (THORPEX) and Potential Benefits for Korea and the East Asia

  • Park, Seon Ki
    • Atmosphere
    • /
    • v.14 no.3
    • /
    • pp.41-54
    • /
    • 2004
  • In this study, a brief overview on a WMO/WWRP program - The Observing System Research and Predictability Experiment (THORPEX) and discussions on perspectives and potential benefits of Asian countries are provided. THORPEX is aimed at accelerating improvements in the accuracy of 1 to 14-day high-impact weather forecasts with research objectives of: 1) predictability and dynamical processes; 2) observing systems; 3) data assimilation and observing strategies; and 4) societal and economic applications. Direct benefits of Asian countries from THORPEX include improvement of: 1) forecast skills in global models, which exerts positive impact on mesoscale forecasts; 2) typhoon forecasts through dropwindsonde observations; and 3) forecast skills for high-impact weather systems via increased observations in neighboring countries. Various indirect benefits for scientific researches are also discussed. Extensive adaptive observation studies are recommended for all high-impact weather systems coming into the Korean peninsula, and enhancement of observations in the highly sensitive regions for the forecast error growth is required to improve forecast skills in the peninsula, possibly through international collaborations with neighboring countries.