• Title/Summary/Keyword: droplet transmission

Search Result 34, Processing Time 0.026 seconds

Effect of droplet protection screen height on the prevention ability of infectious droplet airborne transmission in closed space (밀폐공간에서 비말 가림막 높이에 따른 감염성 비말 공기전파 차단능력 평가)

  • Heo, Jieun;Cho, Hee-joo;Park, Hyun-Seol;Shin, Dongho;Shim, Joonmok;Joe, Yun-Haeng
    • Particle and aerosol research
    • /
    • v.17 no.2
    • /
    • pp.37-42
    • /
    • 2021
  • Although the installation of droplet protection screen (DPS) is known to prevent droplet transmission, there is still a lack of knowledge in effectiveness of DPS installation to block the airborne transmission. In this study, the prevention ability of DPS against airborne transmission was evaluated according to the DPS height. When the DPS was not installed, the maximum concentration of PM1.0 at the location opposite to infected person was 35% of that at the infected person location. When the DPS was installed, the DPS effectively prevented the airborne transmission, consequently approximately 7% of generated particles were measured at the opposite location from particle generation position (infected person location). The prevention ability of DPS increased with DPS height, the maximum prevention efficiency of 95.1% was obtained when the DPS height was 900mm. Moreover, the speed of airborne transmission was delayed by installation of DPS, and the delay time increased with DPS height.

Effectiveness of droplet protective screens and portable air purifiers against droplet and airborne transmission during conversation (비말 가림막과 휴대형 공기청정기 사용에 의한 대화 중 비말 및 공기전파 저감 효과)

  • Jieun, Heo;Dongho, Shin;Hee-Joo, Cho;Hyun-Seol, Park;Yun-Haeng, Joe
    • Particle and aerosol research
    • /
    • v.18 no.4
    • /
    • pp.87-95
    • /
    • 2022
  • Currently, droplet protective screens (DPSs) are used to prevent the spread of respiratory diseases. As virus particles can maintain their infective in indoor environments, recent studies have investigated the risk of airborne transmission. However, the ability of DPSs to block airborne transmission has not been verified yet. In this study, the preventive ability of DPSs against droplet and airborne transmission was evaluated. Moreover, the effectiveness of a Portable air purifier (PAP) was investigated. According to results, in a simulated room where an infectious person spoke, the DPS blocked more than 90% of the micron-sized droplets (with a diameter larger than 1 ㎛) transmitted to the front of the infectious person. However, sub-micron droplets (with a diameter smaller than 1 ㎛) passed through the DPS and spread in a room. However, the PAP reduced the amount of both micron and sub-micron droplets transmitted to the front of the infectious person. When the PAP airflow direction was set from the DPS surface to the free space near the infectious person, improved prevention against droplet and airborne transmission was recorded. However, airborne transmission was accelerated when the PAP airflow direction was set from the free space to the DPS surface.

Numerical Analysis of Damping Effect of Liquid Film on Material in High Speed Liquid Droplet Impingement

  • Sasaki, Hirotoshi;Ochiai, Naoya;Iga, Yuka
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.1
    • /
    • pp.57-65
    • /
    • 2016
  • By high speed Liquid Droplet Impingement (LDI) on material, fluid systems are seriously damaged, therefore, it is important for the solution of the erosion problem of fluid systems to consider the effect of material in LDI. In this study, by using an in-house fluid/material two-way coupled method which considers reflection and transmission of pressure, stress and velocity on the fluid/material interface, high-speed LDI on wet/dry material surface is simulated. As a result, in the case of LDI on wet surface, maximum equivalent stress are less than those of dry surface due to damping effect of liquid film. Empirical formula of the damping effect function is formulated with the fluid factors of LDI, which are impingement velocity, droplet diameter and thickness of liquid film on material surface.

Nano-scale Shell in Phase Separating Gd-Ti-Al-Co Metallic Glass

  • Chang, Hye Jung;Park, Eun Soo;Kim, Do Hyang
    • Applied Microscopy
    • /
    • v.43 no.2
    • /
    • pp.98-101
    • /
    • 2013
  • In the present study, formation of yard and shell has been investigated in as-melt-spun $Gd_{30}Ti_{25}Al_{25}Co_{20}$ alloy using a variety of transmission electron microscopy techniques. The phase separation during cooling leads to the formation of the microstructure consisting of amorphous droplets with different size scales embedded in the amorphous matrix. Due to the interdiffusion at the interface after the first-step phase separation, ~50 nm-thick yard develops on the surface of the primary droplet particle. Due to the critical wetting phenomenon, ~5 nm thickness shell enveloping the droplet forms. The sell is enriched in Co and Ti, implying that the composition is close to that of the droplet.

Cu Line Fabricated with Inkjet Printing Technology for Printed Circuit Board (잉크젯 인쇄 기술을 이용한 인쇄회로기판용 나노구리배선 개발)

  • Seo, Shang-Hoon;Lee, Ro-Woon;Yun, Kwan-Soo;Joung, Jae-Woo;Lee, Hee-Jo;Yook, Jong-Gwan
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1806-1809
    • /
    • 2008
  • Study that form micro pattern by direct ink jet printing method is getting attention recently. Direct ink jet printing spout fine droplet including nano metal particle by force or air pressure. There is reason which ink jet printing method is profitable especially in a various micro-patterning technology. It can embody patterns directly without complex process such as mask manufacture or screen-printing for existent lithography. In this study, research of a technology that ejects fine droplet form of Pico liter and forms metal micro pattern was carried with inkjet head of piezoelectricity drive system. Droplet established pattern while ejecting consecutively and move on the surface at the fixed speed. Patterns formed in ink are mixed with organic solvent and polymer that act as binder. So added thermal hardening process after evaporate organic solvent at isothermal after printing. I executed high frequency special quality estimation of CPW transmission line to confirm electrical property of manufactured circuit board. We tried a large area printing to confirm application possibility of an ink jet technology.

  • PDF

Rapid Fabrication of Micro-nano Structured Thin Film for Water Droplet Separation using 355nm UV Laser Ablation (355 nm UV 레이저 어블레이션을 이용한 마이크로-나노 구조의 액적 분리용 박막 필터 쾌속 제작)

  • Shin, Bo-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.7
    • /
    • pp.799-804
    • /
    • 2012
  • Recently micro-nano structures has widely been reported to improve the performance of waterproof, heat isolation, sound and light absorption in various fields of electric devices such as mobiles, battery, display and solar panels. A lot of micro-sized holes on the surface of thin film provide excellent sound, or heat, or light transmission efficiency more than solid film and simultaneously nano-sized protrusions around micro hole increase the hydrophobicity of the surface of thin film because of lotus leaf effects as generally known previously. In this paper new rapid fabrication process with 355 nm UV laser ablation was proposed to get micro-nano structures on the surface of thin film, which have only been observed at higher laser fluence. Developed thin micro-nano structured film was also investigated the hydrophobic property by measuring the contact angle and demonstrated the possibility to apply to water droplet separation.

Interpretation of the lattice-shaped mura defects in thin-film-transistor liquid crystal displays

  • Woo, B.C.;Han, S.Y.
    • Journal of Information Display
    • /
    • v.12 no.3
    • /
    • pp.121-124
    • /
    • 2011
  • The mechanism for lattice-shaped mura defects was proposed by characterizing the electro-optic properties of liquid crystal (LC), which showed different transmission properties between the normal and mura defect areas. An increase in the mura defect rate was observed when the dotted LC in the one drop filling (ODF) was exposed for a longer time. The dotted LC droplet at the edge evaporated more rapidly than that in the center. This resulted in a higher concentration of polar singles at the edge of the dotted LC droplet, leading to a higher ${\Delta}n$ value and higher transmittance. This implies that the reductio of the exposure time of the dotted LC to air plays a critical role in decreasing the occurrence of lattice-shaped mura defects in ODF.

Tuberculosis Infection and Latent Tuberculosis

  • Lee, Seung Heon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.79 no.4
    • /
    • pp.201-206
    • /
    • 2016
  • Active tuberculosis (TB) has a greater burden of TB bacilli than latent TB and acts as an infection source for contacts. Latent tuberculosis infection (LTBI) is the state in which humans are infected with Mycobacterium tuberculosis without any clinical symptoms, radiological abnormality, or microbiological evidence. TB is transmissible by respiratory droplet nucleus of $1-5{\mu}m$ in diameter, containing 1-10 TB bacilli. TB transmission is affected by the strength of the infectious source, infectiousness of TB bacilli, immunoresistance of the host, environmental stresses, and biosocial factors. Infection controls to reduce TB transmission consist of managerial activities, administrative control, engineering control, environmental control, and personal protective equipment provision. However, diagnosis and treatment for LTBI as a national TB control program is an important strategy on the precondition that active TB is not missed. Therefore, more concrete evidences for LTBI management based on clinical and public perspectives are needed.

Fabrication of Electrically Switchable Bragg Gratings of The Transmission Mode From Holographic Polymer Dispersed Liquid Crystals

  • Kim, Kyung-Jin;Kim, Byung-Kyu;Kang, Young-Soo;Jang, Ju-Seog
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.11C no.3
    • /
    • pp.63-69
    • /
    • 2001
  • Holographic transmission gratings were performed by an Ar-laser( ${\lambda}$=514nm) intensity, the ratio fo LC contents to the surfactant. The addition of the surfactant to the LC and pre-polymer systems causes the droplet to maintain the ideal size at the high fraction(over 40wt%) of the LC contents that induce the films to be fabricated with high diffraction efficiency than that of no surfactant series. The image of these films was examined using a charge coupled device (CCD). We also studied the angular selectivity plots which support the important role in the multiplexer channel (MUX). Eventually, we showed the reconstructive optical image recorded in this transmission mode of HPDLCs.

  • PDF

Microdroplet Impact Dynamics at Very High Velocity on Face Masks for COVID-19 Protection (코로나-19 보호용 페이스 마스크에서의 액적 고속 충돌 거동)

  • Choi, Jaewon;Lee, Dongho;Eo, Jisu;Lee, Dong-Geun;Kang, Jeon-Woong;Ji, Inseo;Kim, Taeyung;Hong, Jiwoo
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.282-288
    • /
    • 2022
  • Facial masks have become indispensable in daily life to prevent infection and spread through respiratory droplets in the era of the corona pandemic. To understand how effective two different types of masks (i.e., KF-94 mask and dental mask) are in blocking respiratory droplets, i) we preferentially analyze wettability characteristics (e.g., contact angle and contact angle hysteresis) of filters consisting of each mask, and ii) subsequently observe the dynamic behaviors of microdroplets impacting at high velocities on the filter surfaces. Different wetting properties (i.e., hydrophobicity and hydrophilicity) are found to exhibit depending on the constituent materials and pore sizes of each filter. In addition, the pneumatic conditions for stably and uniformly dispensing microdroplets with a certain volume and impacting behaviors associated with the impacting velocity and filter type change are systematically explored. Three distinctive dynamics (i.e., no penetration, capture, and penetration) after droplet impacting are observed depending on the type of filter constituting the masks and droplet impact velocity. The present experimental results not only provide very useful information in designing of face masks for prevention of transmission of infectious respiratory diseases, but also are helpful for academic researches on droplet impacts on various porous surfaces.