• Title/Summary/Keyword: droplet evaporation

Search Result 175, Processing Time 0.019 seconds

Experimental Study of Evaporation of Nanofluid Droplet (나노유체 액적의 증발에 관한 실험적 연구)

  • Kim, Yeung Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.7
    • /
    • pp.647-653
    • /
    • 2013
  • The evaporation characteristics of nanofluid droplets on a heated solid surface were experimentally investigated. The experiments were conducted using pure water and a nanofluid of water mixed with CuO nanoparticles, and the solid surface was made of a copper block heated by a nine cartridge heater. The experimental results showed that the evaporation rate of the nanofluid droplet was higher than that of the pure water droplet on the heated solid surface because nanoparticles increased the thermal conductivity of the nanofluid. Furthermore, it was found that the evaporation rate of the nanofluid droplet increased with the solid surface roughness. This may be because the actual area of the liquid-solid interface increased with the solid surface roughness.

The study of a fire fighting characteristic by a Single Evaporating Droplet in the case of a fire of military enclosure space (군사용 밀폐공간내의 화재시 단일 증발액적에 의한 방재특성 연구)

  • 이진호;방창훈;김정수
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.207-217
    • /
    • 2000
  • A fire fighting characteristic by a single evaporating droplet in the case of a fire of military enclosure space was studied experimentally. Transient cooling of solid surface by water droplet evaporation has been investigated through controlled experiments using a heated brass cylinder. Quantitative predictions of droplet evaporation time and in-depth transient temperature distribution in solid have been made. The particular interest was in the removal of thermal energy from the heated cylinder by evaporative cooling. A $10{\mu}1$ single droplet is deposited on a horizontal brass surface with initial temperatures in the range of $90^{\circ}C{\sim}130^{\circ}C.$ The results can be summarized as follows; Evaporating droplet was divided into three different configuration. Evaporation time was predicted as a function of initial surface temperature ($t_c=492.62-6.89T_{s0}+0.0248T_{s0}^2).$ The contact temperature was predicted as a function of initial surface temperature( $T_{i}$=0.94 $T_{s0}$+1.4), The parameter ${\beta}_o$ was predicted as a function of initial surface temperature( ${\beta}_0$ : 0.O0312 $T_{s0}+0.932$)>)>)

  • PDF

Investigation on Behavior of HAN-based Propellant Droplet at High Temperature (고온에서 HAN 계열 추진제 액적의 거동에 대한 연구)

  • Hwang, Chang Hwan;Baek, Seung Wook;Han, Cho Young;Kim, Su Kyum;Jeon, Hyung Yeol
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.329-332
    • /
    • 2012
  • The droplet behavior of 83.9 wt.% HAN water solution was investigated experimentally with various ambient temperature and nitrogen environment. At the initial stage of evaporation under thermal decomposition temperature of HAN, gradual decreasing of droplet diameter was observed. After that, the droplet started to expand due to the internal pressure build up by water nucleation inside the droplet. The micro explosion was observed at higher temperature than the decomposition temperature of HAN and the remaining droplet showed similar behavior of single composition droplet. The decreasing rate was augmented as the ambient temperature increasing.

  • PDF

Experimental Study on Evaporation and Combustion Characteristics of Fuel Droplet with Carbon Nano-particle in RCM (급속압축장치에서 탄소 나노입자가 첨가된 연료 액적의 증발 및 연소 특성에 관한 실험적 연구)

  • Ahn, Hyeongjin;Won, Jonghan;Beak, Seungwook;Kim, Hyemin
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.209-211
    • /
    • 2015
  • Evaporation characteristics of a single droplet of carbon nanofluids were investigated in a rapid compression machine(RCM). n-Heptane and carbon black N990 were used to synthesize the carbon nanofluids. RCM is an experimental set-up to simulate a single compression stroke of reciprocating engine. Temperature and pressure in a reaction chamber were measured during the compression stroke. After the piston reaches top dead center(TDC), temperature and pressure decreased due to the heat loss at wall. In that process, a single droplet of carbon nanofluids underwent unsteady condition. A single droplet was put at the center of reaction chamber. Thermocouple whose tip is $50{\mu}m$ was used not only to measure transient bulk temperature, but also to suspend the droplet. The picture of single droplet was taken using high speed camera with a frame rate of 500 fps. From those pictures, the droplet diameter was measured by visual basic program.

  • PDF

Effect of acoustic wave on the evaporation/combustion of suspended droplet (음파가 고정액적의 증발/연소에 미치는 영향에 관한 연구)

  • Han, Jae-Seob;Kim, Seon-Jin;Kim, Yoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.3
    • /
    • pp.53-60
    • /
    • 2002
  • This paper presents the results of the experimental investigation on the effect of acoustic wave on the combustion of suspended A-1 jet fuel droplets in atmospheric pressure. Experimental results indicate that A-1 jet fuel droplet burning rate constants $k_c$ were independent of initial droplet size and the relative evaporation/burning-rate constant $k_{e'}k_c$(ratio of the acoustically disturbed evaporation/burning-rate constant to the undisturbed evaporation/burning-rate constant) increased remarkably 1.2~1.51times, 1.04~1.42times, for frequency below 100Hz, and sound pressure level above 80dB.

Experimental Study on Evaporation and Combustion Characteristics of Fuel Droplet with Carbon Nano-Particles in RCM (급속압축장치에서 탄소 나노입자가 첨가된 연료 액적의 증발 및 연소 특성에 관한 실험적 연구)

  • Ahn, Hyeongjin;Jyoti, Botchu Vara Siva;Baek, Seung Wook
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.2
    • /
    • pp.7-14
    • /
    • 2016
  • Evaporation and combustion characteristics of fuel droplet with carbon nanoparticle were investigated in a rapid compression machine(RCM). RCM is an experimental equipment to simulate one compression stroke of reciprocating engine. Nitrogen was charged into reaction chamber for evaporation experiment, while oxygen was charged for combustion experiment. N990 carbon black and n-heptane were used to synthesize the carbon nanofluids. Surfactant, span80, was used to make synthesis easier. The droplet pictures were taken using a high speed camera with 500 frames per second. Thermocouple, of which tip is $50{\mu}m$, was used not only to measure transient bulk temperature, but also to suspend the droplet. Reaction chamber temperature was calculated from pressure data. The evaporation rate of nanofluids was improved compared to pure fuel. The ignition delay was promoted due to the nanoparticle, but the burning rate was decreased.

Influences on the Droplet Dynamics and Evaporation due to Closely Spaced Droplet Interaction (입자간의 상호작용으로 인한 입자의 운동 및 증발에 미치는 영향)

  • 이효진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.9
    • /
    • pp.1770-1779
    • /
    • 1992
  • The present study investigated dynamically and thermally interacting droplets in a closely spaced tandem array. By measuring the velocity and diameter of the droplet traveling along the isothermal vertical plate drag coefficients and vaporization rates of droplets at certain location were obtained. During the experiment initial droplet spacings were less than 5, and initial droplet diameters were ranged between 280 .mu.m and 700 .mu.m Drag coefficients on closely spaced droplets were placed far below the standard drag coefficient, for which it was caused turbulence induced from aforelocating droplets also narrow spaces among droplets restricted heat transfer to droplets from hot gas flow. In addition evaporated vapor entrapted between droplets was major factor in delaying droplet vaporization. With the experimental results the drag coefficient was correlated with respect to Reynolds number for the droplet as follows : $c_{D}$ =2.4/Red.$^{0.37}$

A Study on the Heat Transfer of a Liquid Droplet on Heated Surface at the Transitional Boiling Region (가열면상 의 단일액적 의 천이비등영역 에서의 열전달 에 대한 연구)

  • 최인규;남궁규완;이동진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.1
    • /
    • pp.18-25
    • /
    • 1984
  • The transition boiling of a liquid droplet on a heated flat surface was studied utilizing Kotake's model with the effects of viscosity of a thin vapor layer between the droplet and the hot plate taken into account. This problem was analyzed considering the process of the droplet evaporation which resulted in hydrodynamic instability at the liquid-vapor interface. The results of the study are as follows; (1)The effect of the viscosity in the vapor layer at the interface appears as a dimensionless number N, namely .sigma. .delta.$_{0}$ /.rho.nu.$^{2}$ (2)The time required for evaporation at the transitional region increases with the temperature difference ratio .DELTA. T$_{r}$. The rate of increase of the total evaporation time becomes larger as increasing of N$_{m}$(N number at maximum heat flux) increases.s.

Evaporation Cooling Phenomena of Droplets Containing Fire Suppression Agents (화제 억제제가 첨가된 수용액 액적의 증발냉각 현상)

  • 유갑종;방창훈;김현우
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.9
    • /
    • pp.895-903
    • /
    • 2001
  • Evaporation cooling phenomena of droplets containing fire suppression agents on a hot metal surface were experimentally investigated. Solution of water containing potassium acetate (30-50% by weight) and sodium bromide (10-30% by weight) were used in the experiments, and surface temperatures were ranged from 70-116$^{\circ}C$. The evaporation time of the droplet on the heated surface was determined by using frame-by-frame analysis of the video records. It is found that the apparent evaporation time is shorter in turns of pure water, sodium bromide solution and potassium acetate solution. However, the time averaged heat flux is higher in turns of pure water, sodium bromide solution and potassium acetate solution. In-depth temperature variation of the hot metal does not occur significantly by the kinds of additive.

  • PDF

Theoretical Analysis of Ignition of a Coal-Water Slurry Droplets with Interior Temperature Distribution (내부 온도분포를 고려한 Coal-Water Slurry의 점화현상에 관한 이론적 해석)

  • Choi, C.E.;Baek, S.W.;Kim, J.W.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1823-1832
    • /
    • 1993
  • CWS(coal-water slurry) is used for application in power plants, boilers, industrial furnaces. A single coal-water slurry droplet ignition has been examined to reveal the basic nature of their evaporation, volatilization and heating processes. The interior droplet temperature distribution has been considered. The effect of coal thermal conductivity, droplet size, water fraction in the slurry, gas temperature and velocity and radiation on the ignition phenomena were also studied. Either increasing the velocity and gas temperature or decreasing the droplet size and water fraction in the slurry may reduce the time for evaporation and ignition delay time.