• Title/Summary/Keyword: droplet entrainment

Search Result 23, Processing Time 0.023 seconds

NUMERICAL STUDY OF THE DROPLET EJECTION BEHAVIOR OF NEWTONIAN AND SHEAR-THINNING FLUIDS (뉴튼유체와 전단희석유체의 액적분사 거동에 대한 수치해석적 연구)

  • Kim, E.;Baek, J.
    • Journal of computational fluids engineering
    • /
    • v.17 no.3
    • /
    • pp.33-38
    • /
    • 2012
  • The droplet ejection behavior from drop-on-demand printhead are investigated numerically for Newtonian and shear-thinning fluid. The numerical simulation is performed using a volume-of-fluid model. In this study, we compare the printable range in terms of Z number and pinch-off time for Newtonian and shear-thinning fluids. The printability range are found to be 1.08 $$\leq_-$$ Z $$\leq_-$$ 12.9 for Newtonian fluid and 0.8 $$\leq_-$$ Z $$\leq_-$$ 12.9 for shear-thinning fluid. However, air entrainment is observed during merging of primary and satellite droplet within the printability range. The pinch-off time of the shear-thinning fluid is apparently shorter compared to the corresponding Newtonian fluid due to shear-thinning effects and the differences in the pinch-off time is enlarged significantly when the capillary number is larger than 0.5.

Characteristics of Water Spray for Extinguishment of Gasoline Pool Fire (가솔린 화재의 소화를 위한 수분무의 특성에 관한 실험적 연구)

  • jang, Yong-Jae;Kim, Myung-Bae;Kim, Yu
    • Fire Science and Engineering
    • /
    • v.9 no.2
    • /
    • pp.10-16
    • /
    • 1995
  • This study discribes characteristics of water spray for extinguishment of gasoline fire. Experiments are carried out for the gasoline pool fire nth the atomizing nozzles. Droplet size, spray pressure, amount of water which reaches the flame base and velocity of water spray are measured to find extinguishment conditions. Air entrainment due to the water spray and extinguishing process of gasoline fire by water spray are visualized. Boundary conditions of water spray for extinguishment of gasoline pool fire is quantitatively shown. As the result of experiments, it is found that the velocity of entrainment air and sprayed water are almost same and the water droplets size having small diameter under 40$\mu\textrm{m}$ can not extinguish the fire because too small droplets does not reach the fuel surface.

  • PDF

A Prediction of DI Diesel engine Performance using the Multizone Model (Multizone 모델을 이용한 직접분사식 디젤엔진 성능 예측에 관한 연구)

  • ;Liu Shenghua
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.1
    • /
    • pp.40-47
    • /
    • 2000
  • A model for the prediction of combustion and exhaust emissions of DI diesel engine has been formulated and developed. This model is a quasi-dimensional phenomenological one and is based on multi-zone combustion modelling concept. This model is developed based on the concept of Hiroyasu's multizone combustion models. It takes nozzle injection (spray) parameters, induction swirl into consideration and the models of zone velocity, air entrainment, fuel droplet evaporation and mixture combustion are upgraded. Various parameters, such as cylinder pressure, heat release rate, Nox and soot emission, and these parameters in the zone are simulated. The results are compared with the experimental ones, too.

  • PDF

Characteristics of Water Spray for Extinguishment of Gasoline Pool Fire (가솔린 화재의 소화를 위한 수분무의 특성)

  • Jang, Yong-Jae;Kim, Myeong-Bae
    • 연구논문집
    • /
    • s.25
    • /
    • pp.129-135
    • /
    • 1995
  • This study discribes characteristics of water spray for extinguishment of gasoline pool fire. Experiments are carried out for the gasoline pool fire in a small tank with a diameter of 150mm and a height of 8mm. Droplet size, spray pressure, amount of water which reaches the flame base and velocity of water spray are measured to find extinguishment conditions and air entrainment due to the water spray is visualized. Critical conditions of water spray for extinguishment of gasoline pool fire is quantitatively shown.

  • PDF

Fuel Droplet Entrainment and Low Frequency Instability in Hybrid Rocket Combustion (하이브리드 로켓 연소에서 연료액적의 발생과 저주파수 연소불안정)

  • Kim, Jina;Lee, Changjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.7
    • /
    • pp.573-580
    • /
    • 2021
  • Paraffin wax is attracting many attentions for promising solid fuel of hybrid rocket because of its higher regression than other fuels. However, even with paraffin fuel combustion, unsteady low-frequency oscillation of combustion pressure is still observed. And, this is related to the formation of liquid layer and the entrainment of fuel droplets entering the axial combustion gas flow. This study investigates the effect of additional combustion of fuel droplets on the occurrence of low-frequency combustion instability. On the other hand, the formation of fuel droplets depends on Weber Number (the ratio of the inertial force to the surface tension of the liquid) and Reynolds Number of the oxidizer flow. Therefore, a laboratory-scale hybrid rocket was used to monitor the occurrence of combustion instability while changing We number. A series of combustion tests were conducted to control We number by changing the oxidizer flow rate or adding LDPE (low density polyethylene) to base fuel. In the results, it was confirmed that there is a critical We number above which the low-frequency combustion instability occurs.

An experimental study on swirling spray flame structure by air-blast nozzle (기류분사 노즐에 의한 선회 분무 화염의 구조에 관한 실험적 연구)

  • O, Sang-Heon;Baek, Min-Su;Kim, Dong-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.4
    • /
    • pp.473-485
    • /
    • 1997
  • Detailed experimental study has been made of air blast kerosene spray flames with and without swirl in combustion air flow. Phase-Doppler detect technique is used to measure Sauter mean diameter, axial component mean and rms velocity, size-velocity correlation, and number density. These measurements are obtained for both nonreacting and reacting cases under several stable flame conditions. The results show that the introduction of swirl to the combustion air modifies the spatial distribution of droplet size, velocity, and number density, and thus alters the flame structure. However, due to the weak swirl intensity, the overall structure of swirling flames are essentially same as that of nonswirling flames. Physical model of structure of air blast atomized spray flames is projected to show that spray flames are composed of three distinct regions: the two-phase mixture region, the main reaction and the intermittent combustion region. Near the atomizer, two phase mixture of droplet and air is formed in the core region. This dense spray region is characterized by high droplet number density and the strong convective effect. There follows the main combustion region where the main flame penetrates within the spray boundary. Main reaction region of these flames are governed by internal group combustion mode. Finally there exists the intermittent combustion region where local group burning or isolated droplet burning occurs.

Modeling of Atomization Under Flash Boiling Conditions

  • Zeng, Yangbing;Lee, Chia-Fon
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.1
    • /
    • pp.44-51
    • /
    • 2002
  • This paper presents an atomization model for sprays under flash boiling conditions. The atomization is represented by the secondary breakup of a bubble/droplet system, and the breakup is considered as the results of two competing mechanisms, aerodynamic force and bubble growth. The model was applied to predict the atomization of a hollow-cone spray from pintle injector under flash boiling conditions. In the regimes this study considered, sprays are atomized by bubble growth, which produces smaller SMD#s than aerodynamic forces alone. With decreasing ambient pressures, the spray thickness, fuel vaporization rate and vapor radial penetration increases, and the drop size decreases. With increasing the fuel and ambient temperatures to some extent, the effect of flash boiling and air entrainment completely change the spray pattern.

  • PDF

Applicability of One-Dimensional Mechanistic Post-Dryout Prediction Model

  • Jeong, Hae-Yong;No, Hee-Cheon
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.586-591
    • /
    • 1996
  • Through the analysis of many experimental post-dryout data, it is shown that the most probable flow regime near dryout or quench front is not annular flow but churn-turbulent flow when the mass flux is low. A correlation describing the initial droplet size just after the CHF position at low mass flux is suggested through regression analysis. In the post-dryout region at low pressure and low flow, it is found that the suggested one-dimensional mechanistic model is not applicable when the vapor superficial velocity is very low, i.e., when the flow is bubbly or slug flow regime. This is explained by the change of main entrainment mechanism with the change of flow regime. Therefore, the suggested correlation is valid only in the churn-turbulent flow regime ( $j_{g}$ $^{*}$=0.5~4.5).).

  • PDF

Simulation of Spray Behaviors by Injection Rate Shapes in Diesel Injection System (분사율 형상에 따른 디젤분사계의 분무거동에 관한 시뮬레이션)

  • Wang, W.K.;Jang, S.H.;Koh, D.K.;Ahn, S.K.
    • Journal of Power System Engineering
    • /
    • v.3 no.3
    • /
    • pp.36-43
    • /
    • 1999
  • Many of thermodynamic-based diesel combustion simulations incorporated a model of fuel spray which attempts to describe how the spray develops according to time. Because the spray geometry is an essential aspect of the fuel-air mixing process, it is necessary to be calculated quantitatively for the purpose of heat release and emission analysis. In this paper, we proposed the calculating method of non-evaporation spray behaviors by injection rate shapes under actual operating conditions of diesel engine. We confirmed the utility of this calculating model as the calculated results were compared with the measured results. This calculating program can be applied usefully to study on the diesel spray behavior.

  • PDF

Change of Spray Characteristics with Mixing Port Length of Y-Jet Atomizers (Y-Jet 노즐에서의 혼합관 길이변화에 따른 분무특성 연구)

  • 송시홍;이상용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.3021-3031
    • /
    • 1994
  • Experiments have been performed to find out the effect of the mixing port length of Y-jet atomizers on the spray performance, using air and water as the test fluids. Water and air flow rates and drop sizes were measured at each injection pressure condition for different mixing port length. The air flow rate was almost unaffected by the change of the mixing port length. However, the water flow rate was relatively susceptible to the change of the mixing port length. The mixing point pressure was very much influenced by the mixing port length. Variations of spatial distribution of Sauter Mean Diameter (SMD, $D_{32}$) and the cross-section-averaged SMD ($D_{32,m}$) with different mixing port length and air/water mass flow rate ratio were examined. Generally, when the mixing port length was reduced, the mean drop size decreased and became spatially even.