• Title/Summary/Keyword: droplet deformation

Search Result 42, Processing Time 0.024 seconds

NUMERICAL STUDY OF DROPLET IMPACT AND MERGING PROCESSES ON A FLAT SUBSTRATE WITH CONTACT ANGLE HYSTERESIS (동접촉각 이력 효과를 포함한 평판 위에서 액적의 충돌 및 결합 현상에 대한 수치적 연구)

  • Lee, W.;Son, G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.103-108
    • /
    • 2009
  • The droplet impact and merging process on a flat substrate with contact angle hysteresis is numerically studied. The droplet deformation is determined by an improved level-set method employing a sharp-interface technique for the stress condition at the liquid-gas interface and the contact angle condition at the liquid-gas-solid interline. Based on the computations, the droplet impact and merging pattern is investigated to find the optimal condition in manufacturing a micro-line. The effects of dynamic contact angles and droplet spacing on droplet motion are quantified.

  • PDF

Electrohydrodynamic Water Droplet Ejection Characteristics from a Micro-Water-Nozzle (미세 수관 노즐의 전기유체역학적 수적 분사특성)

  • Moon, Jae-Duk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.9
    • /
    • pp.1632-1637
    • /
    • 2010
  • A micro-water-nozzle, as one of a cooling means of micro-electronic devices, has been proposed and investigated. The I-V characteristics of the micro-water-nozzle and effect of applied voltage on the meniscus formation and deformation and ejection processes of de-ionized water on the micro-water-nozzle tip have been investigated. The water ejection processes, such as a drop formation, a drop deformation, a dripping, a cone jet, and an atomization, were taken place on the micro-water-nozzle tip by the electrohydrodynamic forces acted by the DC and AC high voltages applied on the meniscus of the micro-water-nozzle tip. The I-V characteristics of the micro-water-nozzle-to-plate electrode system were different from that of the same metal-point electrode system, due to the meniscus formation and water droplet ejection at the nozzle tip. The positive and negative DC and AC high voltages showed the water droplets ejection, the ejection rates of 1.8, 1.5 and 1.2 g/h respectively, which, however, showed that the proposed micro-water-nozzle-to-plate electrode system could be used as one of an effective pumping means.

The deformation of a free surface due to the impact of a water droplet

  • Kwon, Sun-Hong;Park, Chang-Woo;Lee, Seung-Hun;Shin, Jae-Young;Choi, Young-Myung;Chung, Jang-Young;Isshiki, Hiroshi
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.1
    • /
    • pp.28-31
    • /
    • 2011
  • An attempt was made to compute the free surface deformation due to the impact of a water droplet. The Cauchy Poisson, i.e. the initial value problem, was solved with the kinematic and dynamic free surface boundary conditions linearized. The zero order Hankel transformation and Laplace transform were applied to the related equations. The initial condition for the free surface profile was derived from a captured video image. The effect of the surface tension was not significant with the water mass used in this investigation. The computed and observed free surface deformations were compared.

Experimental Investigation on the Breakup Characteristics of Various Fuels in air Cross-flow Condition (연료 물성에 따른 횡단 유동장 내의 액적 분열 특성에 관한 실험적 연구)

  • Kim, Sa-Yop;Lee, Keun-Hee;Lee, Chang-Sik
    • Journal of ILASS-Korea
    • /
    • v.12 no.3
    • /
    • pp.160-165
    • /
    • 2007
  • In this study, the breakup characteristics of mono disperse droplets were studied with various fuels, ethanol, diesel fuel, biodiesel fuel extracted from soybean oil, and pure water. In order to investigate the droplet behavior in air cross-flow conditions, the experimental equipment was composed of a droplet generator with an air nozzle, and a high-magnification photo detecting system. Droplets produced by the droplet generator were injected into the air stream flowing normal to a direction of liquid drop jet. Digital images of the droplet behavior in air flow field were recorded by controlling the air flow rate. From the inspections, droplet breakup mechanism is primarily classified into the two kinds of stage, first breakup stage and second breakup stage. At the first breakup stage, droplet deformation rate seems to be affected by the force induced by the surface tension and the viscosity. On the other hand, at the second breakup stage, droplet is broken up mainly induced by the surface tension, so the breakup transition can be divided by the regular Weber number.

  • PDF

Influence of Droplet Drag Models on Diesel Spray Characteristics under Ultra-High Injection Pressure Conditions (극초고압 조건에서 디젤 분무 특성에 미치는 액적 항력 모델의 영향)

  • Ko, Gwon-Hyun;Lee, Seong-Hyuk;Lee, Jong-Tai;Ryou, Hong-Sun
    • Journal of ILASS-Korea
    • /
    • v.9 no.3
    • /
    • pp.42-49
    • /
    • 2004
  • The present article investigates the influence of droplet drag models on predictions of diesel spray behaviors under ultra-high injection pressure conditions. To consider drop deformation and shock disturbance, this study introduces a new hybrid model in predicting drag coefficient from the literature findings. Numerical simulations are first conducted on transient behaviors of single droplet to compare the hybrid model with earlier conventional model. Moreover, using two different models, extensive numerical calculations are made for diesel sprays under ultra-high pressure sprays. It is found that the droplet drag models play an important role in determining the transient behaviors of sprays such as spray tip velocity and penetration lengths. Numerical results indicate that this new hybrid model yields the much better conformity with measurements especially under the ultra-high injection pressure conditions.

  • PDF

The Effects of Initial Droplet Shape and Number Density on Modeling of Non-evaporating Diesel Sprays (디젤분무의 모델에서 액적의 형상 및 수밀도의 영향에 관한 연구)

  • Won, Y.H.
    • Journal of ILASS-Korea
    • /
    • v.7 no.2
    • /
    • pp.22-30
    • /
    • 2002
  • A number of droplet breakup models have been developed to predict the diesel spray. The capabilities of droplet deformation and breakup models such as TAB, ETAB, DDB and APTAB models are evaluated in modeling the non-evaporating diesel sprays injected into atmosphere. New methods are also suggested that take into account the non- spherical shape of droplets and the reduced drag force by the presence of neighbouring droplets. The KIVA calculations with standard ETAB, DDB, and APTAB models predict well the spray tip penetrations of the experiment, but overestimate the Sauter mean Diameter(SMD) of droplets. The calculation with non spherical droplets injected from the nozzle shows very similar results to the calculation with spherical droplets. The drag coefficient which is linearly increased with the time after start of injection during the breakup time gives the smaller SMD that agrees well with the experimental result.

  • PDF

Development of Hybrid Model for Simulating of Diesel Spary Dynamics (디젤분무의 모사를 위한 혼합 모델의 개발)

  • 김정일;노수영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.1
    • /
    • pp.8-19
    • /
    • 2001
  • A number of atomization and droplet breakup models have been developed and used to predict the diesel spray characteristic. Most of these models could not provide reasonable computational result of the diesel spray characteristic because they have only considered the primary breakup. A hybrid model is, therefore, required to develop by considering the primary and secondary breakup of liquid jet. according to this approach, wave breakup(WB) model was used compute the primary breakup of the liquid jet and droplet deformation and breakup(DDB) model was used for the secondary breakup of droplet. Development of hybrid model by using KIVA-II code was performed by comparing with the experimental data of spray tip penetration and SMD from the literature. A hybrid model developed in this study could provide the good agreement with the experimental data of spray tip penetration. The prediction results of SMD were in good agreement between 0.5 and 1.0 ms after the start of injection. Numerical results obtained by the present hybrid model have the good agreement with the experimental data with the breakup time constant in WB model of 30, and DDB model constant Ck of 1.0 when the droplet becomes less than 95% of maximum droplet diameter injected.

  • PDF

Effects of Substrate Materials on the Porosity Formation of Spary Cast Deposit (분사주조 성형체의 기공형성에 대한 기판재료의 영향)

  • Kim, Dong-Gyu
    • Journal of Korea Foundry Society
    • /
    • v.13 no.5
    • /
    • pp.476-483
    • /
    • 1993
  • The influence of substrate materials on the degree of basal porosity during spray casting process has been investigated. Different conditions of droplet spreading on the substrate were induced by varying the substrate material. Flat sections of cast iron and aluminum have been spray deposited via spray casting process onto an aluminum substrate, a low carbon steel substrate, and an alumina based refractory substrate. Results for cast iron and aluminum sprayed onto the aluminum substrate showed significant improvements in the surface condition and degree of basal porosity with evidence of substrate deformation that round pits ranging from $5{\mu}m$ to $20{\mu}m$ in diameter are distributed on the surface of aluminum substrate. The lowest level of porosity was developed in alumina based refractory material. Several mechanisms for porosity formation were discussed with droplet impact pressure and droplet spreading. Adopting a spray cutting mechanism for removing the periphery of spray cone, porosity level was remarkably decreased.

  • PDF

Measurements of Heat Transfer Distribution in Spray Cooling of Hot Steel Plate . (분무냉각에 의한 강판 열처리과정에 있어서 열전달분포의 측정)

  • 김영찬;유갑종;서태원
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.10
    • /
    • pp.886-893
    • /
    • 2000
  • A good understanding of the heat transfer distribution is very important to suppress the deformation of steel products. In this study, the local heat transfer coefficients are experimentally investigated to understand the heat transfer distribution of thick steel plates with even flat spray nozzle. The steel slabs are cooled down from the initial temperature of about $1000^{\circ}C$ , and the local heat transfer coefficients and surface temperatures are calculated from the measured temperature-time history. The results show that the local heat transfer coefficients of spray cooling are dominated by the local droplet flow rate, and in proportion to becoming more distant from the center of heat transfer surface, the local heat transfer coefficients decrease with the decrease of the local droplet flow rate.

  • PDF