• Title/Summary/Keyword: driving-safety information

Search Result 436, Processing Time 0.037 seconds

Lane Change Driving Analysis based on Road Driving Data (실도로 주행 데이터 기반 차선변경 주행 특성 분석)

  • Park, Jongcherl;Chae, Heungseok;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.10 no.1
    • /
    • pp.38-44
    • /
    • 2018
  • This paper presents an analysis on driving safety in lane change situation based on road driving data. Autonomous driving is a global trend in vehicle industry. LKAS technologies are already applied in commercial vehicle and researches about lane change maneuver have been actively studied. In autonomous vehicle, not only safety control issue but also imitating human driving maneuver is important. Driving data analysis in lane change situation has been usually dealt with ego vehicle information such as longitudinal acceleration, yaw rate, and steering angle. For this reason, developing safety index according to surrounding vehicle information based on human driving data is needed. In this research, driving data is collected from perception module using LIDAR, radar and RT-GPS sensors. By analyzing human driving pattern in lane change maneuver, safety index that considers both ego vehicle and surrounding vehicle state by using relative velocity and longitudinal clearance has been designed.

Collecting the Information Needs of Skilled and Be-ginner Drivers Based on a User Mental Model for a Cus-tomized AR-HUD Interface

  • Zhang, Han;Lee, Seung Hee
    • Science of Emotion and Sensibility
    • /
    • v.24 no.4
    • /
    • pp.53-68
    • /
    • 2021
  • The continuous development of in-vehicle information systems in recent years has dramatically enriched drivers' driving experience while occupying their cognitive resources to varying degrees, causing driving distraction. Under this complex information system, managing the complexity and priority of information and further improvement in driving safety has become a key issue that needs to be urgently solved by the in-vehicle information system. The new interactive methods incorporating the augmented reality (AR) and head-up display (HUD) technologies into in-vehicle information systems are currently receiving widespread attention. This superimposes various onboard information into an actual driving scene, thereby meeting the needs of complex tasks and improving driving safety. Based on the qualitative research methods of surveys and telephone interviews, this study collects the information needs of the target user groups (i.e., beginners and skilled drivers) and constructs a three-mode information database to provide the basis for a customized AR-HUD interface design.

Amber Information Design to Keep Safety-Driving Under Road Structure at Local-Scale Geographic (국지지역 도로 기반 시설에서 안전운전을 위한 경보 정보 설계)

  • Park, Jung-Chan;Hong, Gyu- Jang
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.1
    • /
    • pp.48-55
    • /
    • 2009
  • In order to keep safe driving conditions under road networks, there are several formations such as road structure, road surface condition, traffic occupancy and supplement of an accurate information of traffic status ahead To support safe-driving on each road formation, each formation is supplied with various information to help the driver. However, in some cases like rapid status change at local-scale geography, traffic information systems often displays insufficient information because of the lack of information correlation. In order to accurately aware the driver, all road formation must be in sync. It is important to supply accurate information to the driver because this information directly impacts the drivers on the road. This paper discusses the amber information to keep the least safety driving over road formations including tunnels and bridges. This paper also will propose the informations for safe-driving conditions, information linkage on the road and rule-base safety information, as ITS technology, being displayed for all drivers under the worst weather conditions.

Development of driving simulator modules for driving safely (주행경제를 위한 드라이빙 시뮬레이터 모듈 연구)

  • Chung, Sung-Hak
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2008.11a
    • /
    • pp.569-578
    • /
    • 2008
  • The aim of this study is to propose economical safety driving speed index which those are geometric road status; examine the levels of which those cost-benefit of driving fuel expenditure; are search road safety design and operational technology for driving simulators. For the objective, we analyzed the current status of driving fuel expenditure and driving scenarios by the road alignments, and reviewed driving and technical specifications by the geometric types of road according to the implementation, and extended completion. Throughout the result of this study, diverse related driving information provision service, efficiently driving system is expected to be implemented in the national highway design system.

  • PDF

Comparative Analysis of Requirements for Information Presentation on In-vehicle Display Systems by Driving Career (운전 경력에 따른 차량 내 디스플레이 정보표시 요구사항 비교)

  • Gu, Bo Ram;Ju, Da Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.6
    • /
    • pp.668-676
    • /
    • 2016
  • The accelerated convergence of automobiles and ICT has led to an increase in in-vehicle electronic devices designed to enhance the safety and convenience of drivers. Consequently, the information presentation on in-vehicle display systems for drivers and passengers need to be taken into account in order to guarantee driving stability while satisfying the needs of UX-based design users. This study compared and evaluated requirements for information items shown on in-vehicle displays regarding driving safety and convenience by groups according to driving career. A total of 38 information items related to safety and convenience that can be displayed while driving and pulling over were collected. Their level of necessity was tested and evaluated by 234 drivers. Using the results, we conducted a comparative analysis on the requirements for information presentation on in-vehicle display systems by groups according to driving career.

Relative Effects of Education and In-vehicle Information System on Eco-driving and Driving Workload (교육과 차량 내 정보 제공 장비가 에코 드라이빙 행동과 운전자 작업부하에 미치는 영향에 대한 검증)

  • Lee, Kyehoon;Oah, Shezeen
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.5
    • /
    • pp.66-70
    • /
    • 2013
  • This study examined the relative effects of education and eco-IVIS(in-vehicle information system) to reduce fuel consumption and greenhouse gas emissions. Also the study investigated the increasing of driving workload when drivers interact with intervention technique. Thirty participants randomly assigned into two groups(training and eco-IVIS) and conducted driving before and after the each intervention technique. While driving, we observed three driving behaviors: Frequency of excessive RPM, percent of speeding, and mean fuel efficiency. Also the Driver Activity Load Index was used to rate participants' subjective ratings of driving workload. Although the results showed positive impact of both education and eco-IVIS to increasing the eco-driving behaviors, eco-IVIS was more effective than education. However, we found comparable level of driving workload in the education and eco-IVIS.

Real-Time Safety Driving Assistance System Based on a Smartphone

  • Kang, Joon-Gyu;Kim, Yoo-Won;Jun, Moon-Seog
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.8
    • /
    • pp.33-39
    • /
    • 2017
  • In this paper, we propose a method which implements warning to drivers through real-time analysis of risky and unexpected driver and vehicle behavior using only a smartphone without using data from digital tachograph and vehicle internal sensors. We performed the evaluation of our system that demonstrates the effectiveness and usefulness of our method for risky and unexpected driver and vehicle behavior using three information such as vehicle speed, azimuth and GPS data which are acquired from a smartphone sensors. We confirmed the results and developed the smartphone application for validate and conducted simulation using actual driving data. This novel functionality of the smartphone application enhances drivers' situational awareness, increasing safety and effectiveness of driving.

Development of Eco driving Simulator Module for Economical Driving (경제적 주행을 위한 친환경 주행 시뮬레이터 모듈 개발)

  • Chung, Sung-Hak
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.7
    • /
    • pp.151-160
    • /
    • 2009
  • The aim of this study is to propose economical driving speed index which those are geometric road status; assess the levels of which those cost-benefit of driving energy consumption and emission; are search road safety design and operational technology for driving simulator. For the objective, we analyzed the current status of driving energy consumption and driving scenarios by the road alignments, and reviewed driving and technical specifications by the geometric types of road according to the implementation, and extended completion. Throughout the result of this study, diverse related driving information provision service, efficiently navigation driving module is expected to be implemented in the national highway design system.

In-Vehicle AR-HUD System to Provide Driving-Safety Information

  • Park, Hye Sun;Park, Min Woo;Won, Kwang Hee;Kim, Kyong-Ho;Jung, Soon Ki
    • ETRI Journal
    • /
    • v.35 no.6
    • /
    • pp.1038-1047
    • /
    • 2013
  • Augmented reality (AR) is currently being applied actively to commercial products, and various types of intelligent AR systems combining both the Global Positioning System and computer-vision technologies are being developed and commercialized. This paper suggests an in-vehicle head-up display (HUD) system that is combined with AR technology. The proposed system recognizes driving-safety information and offers it to the driver. Unlike existing HUD systems, the system displays information registered to the driver's view and is developed for the robust recognition of obstacles under bad weather conditions. The system is composed of four modules: a ground obstacle detection module, an object decision module, an object recognition module, and a display module. The recognition ratio of the driving-safety information obtained by the proposed AR-HUD system is about 73%, and the system has a recognition speed of about 15 fps for both vehicles and pedestrians.

A Study on the Drowsy Driving Prevention System using the Pulse Sensor (맥박센서를 이용한 졸음방지운전시스템에 관한 연구)

  • Park, Chun-Myoung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.577-578
    • /
    • 2016
  • This paper presents a method of vehicle safety system using a pulse sensor which will be able to occurs drowsy driving accident when people driving. The proposed vehicle safety system alarms according to the driver drowsy condition, therefore the driver prevent the direct and $2^{nd}$ accident beforehand cognitive unexpected and dangerous accident using vehicle safety system.

  • PDF