• Title/Summary/Keyword: driving vehicle test

Search Result 633, Processing Time 0.026 seconds

Measuring Particle Number from Light-duty Diesel Vehicles in WLTP Driving Cycle (WLTP 주행모드에서의 경유차 입자상물질 개수 배출 특성)

  • Park, Junhong;Lee, Jongtae;Kim, Jeongsoo;Kim, Sunmoon;Ahn, Keunhwan
    • Journal of ILASS-Korea
    • /
    • v.18 no.3
    • /
    • pp.155-160
    • /
    • 2013
  • Worldwide harmonized light-duty vehicle test procedure (WLTP) for emission certification has been developed in WP.29 forum in UN ECE since 2007. The test procedure is expected to be applied to Korean light-duty diesel vehicles at the same time of adoption in Europe. The air pollutant emissions from light-duty vehicles have been regulated with weight per distance travelled which means the driving cycles can affect the results. The six Euro-5 light-duty diesel vehicles including sedan, SUV and truck have been tested with WLTP, NEDC which is used for emission certification for light-duty diesel vehicles, and CVS-75 to estimate how much particle number emission can be affected by different driving cycles. The averaged particle number emissions have not shown statistically meaningful difference. The maximum particle number emission have been found in Low speed phase of WLTP which is mainly caused by cooled engine conditions. The amount of particle number emission in cooled engine condition is much different as test vehicles. It means different technical solution is required in this aspect to cope with WLTP driving cycle.

Estimation of Real Driving Fuel Consumption Rate of a Vehicle When Driving on Road Including Grade (경사가 포함된 도로의 주행시 실제 주행연비 예측)

  • 박진호;박영일;이장무
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.3
    • /
    • pp.65-76
    • /
    • 2000
  • To measure the fuel consumption rate of a vehicle, a car is tested on chassis dynamometer following given driving mode. But the fuel consumption rate measured by this method may be somewhat different from that measured in on-road driving conditions. It may be due to not considering road grade in driving modes. In this study, new driving modes which include road grade are proposed, and the simulation program to estimate the real driving fuel consumption rate of a vehicle is developed. On-road car tests to verify the simulation program are carried out and the results of the simulation are analysed and compared with those of the experiments.

  • PDF

A Study on Women's Specific Package Factors for Compact Vehicle (소형차에서의 여성 특화 패키지 인자 연구)

  • Nam, Jongyong;Lee, Yong;Kim, Taeyub;Park, Inseong;Lee, Hotaek
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.157-165
    • /
    • 2014
  • To develop a compact vehicle for women, the most important areas are 'behavioral characteristics, life style and driving posture'. Static AM95%ile manikin is used for package guideline. Since women's characteristics and sitting position are different from men, however, the guideline cannot satisfy women drivers. Therefore, the goal of this study is to make the database with dynamic women's driving posture and behavioral characteristics at compact vehicle. Research process will be made as follows. Firstly, through the online/offline survey and statistic analysis, lifestyle and behavioral characteristics (discomfort elements) of women are extracted. Secondly, the author performs scenario test to acquire the discomfort value of driving situation and life style. 3D models of women's manikin and driving posture were created by CATIA HUMAN. The 3D models are used for the purpose of analyzing women's driving posture. Finally, with the ANOVA result and comparison between real driving posture and package guidelines, the author is able to suggest the main issue for women drivers.

A Study on the ACC Safety Evaluation Method Using Dual Cameras (듀얼카메라를 활용한 ACC 안전성 평가 방법에 관한 연구)

  • Kim, Bong-Ju;Lee, Seon-Bong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.2
    • /
    • pp.57-69
    • /
    • 2022
  • Recently, as interest in self-driving cars has increased worldwide, research and development on the Advanced Driver Assist System is actively underway. Among them, the purpose of Adaptive Cruise Control (ACC) is to minimize the driver's driving fatigue through the control of the vehicle's longitudinal speed and relative distance. In this study, for the research of the ACC test in the real environment, the real-road test was conducted based on domestic-road test scenario proposed in preceding study, considering ISO 15622 test method. In this case, the distance measurement method using the dual camera was verified by comparing and analyzing the result of using the dual camera and the result of using the measurement equipment. As a result of the comparison, two results could be derived. First, the relative distance after stabilizing the ACC was compared. As a result of the comparison, it was found that the minimum error rate was 0.251% in the first test of scenario 8 and the maximum error rate was 4.202% in the third test of scenario 9. Second, the result of the same time was compared. As a result of the comparison, it was found that the minimum error rate was 0.000% in the second test of scenario 10 and the maximum error rate was 9.945% in the second test of scenario 1. However, the average error rate for all scenarios was within 3%. It was determined that the representative cause of the maximum error occurred in the dual camera installed in the test vehicle. There were problems such as shaking caused by road surface vibration and air resistance during driving, changes in ambient brightness, and the process of focusing the video. Accordingly, it was determined that the result of calculating the distance to the preceding vehicle in the image where the problem occurred was incorrect. In the development stage of ADAS such as ACC, it is judged that only dual cameras can reduce the cost burden according to the above derivation of test results.

Influence of Four Types of Steering Assistive Devices on Driving Performance: Comparison of Normal and Disabled People with and without Driver's License (4가지 선회보조 장치가 운전 성능에 미치는 영향: 장애 유무와 운전면허 유무에 따른 비교)

  • Song, Jeongheon;Kim, Yongchul
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.1
    • /
    • pp.32-42
    • /
    • 2017
  • The aim of this study was to evaluate driving performance of Healthy and disabled groups (with or without driver's license) to control steering wheel by using steering assistive devices in the driving simulator. The persons with partial loss of use of all four limbs have problems in operation of the motor vehicle because of functional loss to operate steering wheel. Therefore, if steering assistive devices for grasping the steering wheel are used to control the vehicle on the road in persons with disabilities, the disabled persons can improve mobility in their community life by driving a motor vehicle safely. Ten healthy subjects (with or w/o driver's license) and ten subjects with physical disabilities (with or w/o driver's license) were involved in this study to evaluate driving performance to operate steering wheel by using four types of steering assistive devices (Single-pin, V-grip, Palm-grip, Tri-pin) in driving simulator. STISim Drive 3 software was used to test the steering performance in four scenarios: straight road at low and high speed of vehicle (40 km/h and 80 km/h), curved road at low and high speed of vehicle (40 km/h and 80 km/h). This study used two-way ANOVA in order to compare the effects of two factors (type of steering assistive device and subject group) in the three dependent variables of driving performance (the lateral position of vehicle, standard deviation of lateral position representing the variation of the left and right movement of the vehicle and the number of line crossing). The mean values of the three dependent variables (lateral position, standard deviation of lateral position, the number of line crossing) of steering performance were statistically significantly smaller for the healthy or disabled groups with driver's license than the other groups without driver's license on the curved road at high speed of vehicle compared to low speed of vehicle.

A Study on Regional and Individual Preference Sound Quality for Luxury Vehicle (고급 차량음의 지역별 개인별 선호 음질에 관한 연구)

  • Kim, Seong-Hyeon;Park, Dong-Chul;Hong, Seok-Gwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.364-369
    • /
    • 2012
  • The vehicle sound classified into driving sound due to power-train, operating sound due to electric motor like sunroof, door lock and electronic sound. These vehicle sound has various features depend on the characteristic of sound that user required. And it based on cultural and regional difference of user. In this study, the user required vehicle sound characteristics for luxury sedan was investigated in overall viewpoint. And virtual target sound was developed through the result of user preference investigation. Next, Jury test was carried out in Germany, USA and Korea for evaluating the target sound. And the regional and individual difference of preference was analyzed through the result of jury test. This result of research will be contributed to design of vehicle sound quality and target sound setting.

  • PDF

Development of a Simulation Model based on CAN Data for Small Electric Vehicle (소형 전기자동차 CAN 데이터 기반의 시뮬레이션 모델 개발)

  • Lee, Hongjin;Cha, Junepyo
    • Journal of ILASS-Korea
    • /
    • v.27 no.3
    • /
    • pp.155-160
    • /
    • 2022
  • Recently, major developed countries have strengthened automobile fuel efficiency regulations and carbon dioxide emission allowance standards to curb climate change caused by global warming worldwide. Accordingly, research and manufacturing on electric vehicles that do not emit pollutants during actual driving on the road are being conducted. Several automobile companies are producing and testing electric vehicles to commercialize them, but it takes a lot of manpower and time to test and evaluate mass-produced electric vehicles with driving mileage of more than 300km on a per-charge. Therefore, in order to reduce this, a simulation model was developed in this study. This study used vehicle information and MCT speed profile of small electric vehicle as basic data. It was developed by applying Simulink, which models the system in a block diagram method using MATLAB software. Based on the vehicle dynamics, the simulation model consisted of major components of electric vehicles such as motor, battery, wheel/tire, brake, and acceleration. Through the development model, the amount of change in battery SOC and the mileage during driving were calculated. For verification, battery SOC data and vehicle speed data were compared and analyzed using CAN communication during the chassis dynamometer test. In addition, the reliability of the simulation model was confirmed through an analysis of the correlation between the result data and the data acquired through CAN communication.

Development of An Accelerated Durability Test Mode for Fuel Cell (연료전지 가속내구모드 개발)

  • LEE, YONGHEE;OH, DONGJO;JEON, UISIK;LEE, JONGHYUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.5
    • /
    • pp.493-498
    • /
    • 2015
  • The fuel cell vehicle is a type of hydrogen vehicle which uses a fuel cell to produce electricity, powering its on-board electric motor. The fuel cell vehicle driving principle is completely different from the internal combustion engine vehicle. In order to ensure the durable quality of the fuel cell vehicle, durability test mode considering the characteristics of the fuel cell must be developed. In this study, we derived the durability test mode profile through collecting and analyzing fuel cell vehicle driving data. Then, the accelerated durability test mode is developed by adding degradation conditions and is experimentally validated to have an acceleration factor of 5~6.

Improvement of Washout Algorithm for Vehicle Driving Simulator Using Vehicle Tilt Data and Its Evaluation (차량 기울기값을 이용한 차량 시a레이터용 워시아웃 알고리즘에 대한 개선 및 평가)

  • Moon, Young-Geun;Kim, Moon-Sik;Kim, Kyung-Dal;Lee, Min-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.8
    • /
    • pp.823-830
    • /
    • 2009
  • For developing automotive parts and telematics devices the real car test often shows limitation because it needs high cost, much time and has the possibility of the accident. Therefore, a Vehicle Driving Simulator (VDS) instead of the real-car test has been used by some automotive manufactures, research centers, and universities. The VDS is a virtual reality device which makes a human being feel as if one drives a vehicle actually. Unlike actual vehicle, the simulator has limited kinematic workspace and bounded dynamic characteristics. So it is difficult to simulate dynamic motions of a multi-body vehicle model fully. In order to overcome these problems, a washout algorithm which restricts workspace of the simulator within the kinematic limits is needed, and analysis of dynamic characteristics is required also. However, a classical washout algorithm contains several problems such as time delay and generation of wrong motion signal caused by characteristics of filters. Specially, the classical washout algorithm has the simulator sickness when driver hardly turns brakes and accelerates the VDS. In this paper, a new washout algorithm is developed to enhance the motion sensitivity and improve the simulator sickness by using the vehicle tilt signal which is generated in the real time vehicle dynamic model.

A Study on the Analysis of Emission Characteristics for Light-duty Diesel Vehicle According to the Severity of the Test Route (주행 경로의 가혹도에 따른 소형 경유 자동차의 배출 특성 분석에 관한 연구)

  • Sangki Oh;Youngjae Jeon;Junepyo Cha
    • Journal of ILASS-Korea
    • /
    • v.29 no.1
    • /
    • pp.16-22
    • /
    • 2024
  • The EU (European Union) was introduced Euro-6e in 2023. Recently, the EU prepare to introduce Euro-7. One of difference Euro-6e and Euro-7 is test route condition. This study developed 5 test routes that have different characteristics and severity. The severity of test routes was made by traffic and road gradient. And this study was conducted RDE test on 5 test routes for Light-Duty diesel vehicle (Euro-6d). Based on the test results, the emission characteristics of CO2 and NOx were analyzed according to the severity of the test routes. Especially, 4 test routes were satisfied normal driving condition of Euro-7 and other test route was satisfied extended driving condition of Euro-7.