• Title/Summary/Keyword: driving performance

Search Result 2,484, Processing Time 0.024 seconds

LiDAR based Real-time Ground Segmentation Algorithm for Autonomous Driving (자율주행을 위한 라이다 기반의 실시간 그라운드 세그멘테이션 알고리즘)

  • Lee, Ayoung;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.2
    • /
    • pp.51-56
    • /
    • 2022
  • This paper presents an Ground Segmentation algorithm to eliminate unnecessary Lidar Point Cloud Data (PCD) in an autonomous driving system. We consider Random Sample Consensus (Ransac) Algorithm to process lidar ground data. Ransac designates inlier and outlier to erase ground point cloud and classified PCD into two parts. Test results show removal of PCD from ground area by distinguishing inlier and outlier. The paper validates ground rejection algorithm in real time calculating the number of objects recognized by ground data compared to lidar raw data and ground segmented data based on the z-axis. Ground Segmentation is simulated by Robot Operating System (ROS) and an analysis of autonomous driving data is constructed by Matlab. The proposed algorithm can enhance performance of autonomous driving as misrecognizing circumstances are reduced.

Human Driving Data Based Simulation Tool to Develop and Evaluate Automated Driving Systems' Lane Change Algorithm in Urban Congested Traffic (도심 정체 상황에서의 자율주행 차선 변경 알고리즘 개발 및 평가를 위한 실도로 데이터 기반 시뮬레이션 환경 개발)

  • Dabin Seo;Heungseok Chae;Kyongsu Yi
    • Journal of Auto-vehicle Safety Association
    • /
    • v.15 no.2
    • /
    • pp.21-27
    • /
    • 2023
  • This paper presents a simulation tool for developing and evaluating automated driving systems' lane change algorithm in urban congested traffic. The behavior of surrounding vehicles was modeled based on driver driving data measured in urban congested traffic. Surrounding vehicles are divided into aggressive vehicles and non-aggressive vehicles. The degree of aggressiveness is determined according to the lateral position to initiate interaction with the vehicle in the next lane. In addition, the desired velocity and desired time gap of each vehicle are all randomly assigned. The simulation was conducted by reflecting the cognitive limitations and control performance of the autonomous vehicle. It was possible to confirm the change in the lane change performance according to the variation of the lane change decision algorithm.

The Study of the Development of Inertia Braking System for the Trailer and the Testing Evaluation (관성제동장치 장착 트레일러의 제동성능에 관한 연구)

  • Kim, Soon-Yeong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.6
    • /
    • pp.114-119
    • /
    • 2007
  • Because the small trailers do not have the main brake system, it is difficult to gain the effective braking performance of the trailers while driving them. Especially it is very hard to brake them on the slope road condition. So we have technically developed Inertia Braking System for the military trailers which have not main braking system. Inertia Braking System is designed to be activated by the inertia force of trailer. It consists of the brake rod, damping cylinder, hand brake lever and brake cables. We have tested the trailer's braking performance. As a result, we have showed that the trailer's braking performance of the trailer equipped with Inertia Braking System, the road driving performance and the braking safety capability are improved dramatically. And we hope that it is rare to happen the accident while driving.

Performance Prediction of solenoid Actuated Hydrogen Injector (솔레노이드 구동 수소인젝터의 성능예측)

  • 이형승;이용규;김한조;김응서
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.174-185
    • /
    • 1997
  • The performance of the solenoid actuated hydrogen injector and the capacitive peak-hold type driving circuit was predicted through the modeling of the injector and the driving circuit the modeling was composed of the driving circuit, the solenoid, the moving parts of the injector, and the hydrogen injection system. The performance of the injector through the modeling was compared with the results of the solenoid and injector rig tests, and those were consistent with each other. Through the prediction of the injector performance, the effects of the components such as electrical resistor, capacitor, and injector spring are easily known to the injector performance required.

  • PDF

Analysis and performance evaluation of the parallel typed for a vehicle driving simulator (병렬구조형 차량운전 모사장치의 성능평가 및 분석)

  • 박일경;박경균;김정하;이운성
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1481-1484
    • /
    • 1997
  • The vehicle driving simulator expects vehicle motion with real-time simulation arise from driver's steering, accelerating, stopping and simulates motion of vehicl with visula, audio and washout algorithm. And it gives a vivid feeling to driver in reality. Vehicle driving simulator with vehicle integration control system is used for analysis of analysis of vehicle controllaility, steering capacity and safety in various pseudo environment alike. basides, it analyzeds vehicle safety factor dirver's reaction and promotes traffic safety without driver's own risks. The main proceduress of development of the vehicle driving simulator are classified by 3 parts. first the motion base system which can be generated by the motion queues, should be developed. Secondly, real-time vehicle software which can afford the vehicle dynamics, might be constructed. The third procedure is the integration of vehicle driing simulator which can be interconnected between visual systems with motion base. In this study, we are to study of the motion base for a vehicle driving simulator design and that of its real time control and using an extra gyro sensor and accelerometers to find a position and an orientatiion of the moving platform except for calculating forward kinematics. To drive the motion base, we use National Instruments corp's Labview software. Furthemore, we use analysis module for the vehicle motionand the washout algorithm module to consummate driving simulator, which can be driven by human in reality, so we are doing experimentally process about various vehicle motion conditon.

  • PDF

Development and Validation of Safety Performance Evaluation Scenarios of Autonomous Vehicle based on Driving Data (주행데이터 기반 자율주행 안전성 평가 시나리오 개발 및 검증)

  • Lim, Hyeongho;Chae, Heungseok;Lee, Myungsu;Lee, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.9 no.4
    • /
    • pp.7-13
    • /
    • 2017
  • As automotive industry develops, the demand for increasing traffic safety is growing. Lots of researches about vehicle convenience and safety technology have been implemented. Now, the autonomous driving test is being conducted all over the world, and the autonomous driving regulations are also being developed. Autonomous vehicles are being commercialized, but autonomous vehicle safety has not been guaranteed yet. This paper presents scenarios that assess the safety of autonomous vehicles by identifying the minimum requirements to ensure safety for a variety of situations on highway. In assessing driving safety, seven scenarios were totally selected. Seven scenarios were related to lane keeping and lane change performance in certain situations. These scenarios were verified by analyzing the driving data acquired through actual vehicle driving. Data analysis was implemented via computer simulation. These scenarios are developed based on existing ADAS evaluation and simulation of autonomous vehicle algorithm. Also Safety evaluation factors are developed based on ISO requirements, other papers and the current traffic regulations.

An evaluation scenario of safety performance for extraordinary service permission of autonomous vehicle (자율주행 자동차 임시운행 허가를 위한 안전 성능 평가 시나리오)

  • Jeong, Yonghwan;Yi, Kyongsu;Choi, In Seong;Min, Kyong Chan
    • Journal of Auto-vehicle Safety Association
    • /
    • v.7 no.2
    • /
    • pp.44-49
    • /
    • 2015
  • This paper presents an evaluation scenario of safety performance for extraordinary service permission of autonomous vehicle driving on a motorway. Based on advanced driver assistance system (ADAS) which is already mass-production, an autonomous vehicle driving on motorway is tested on the public roads and also getting close to mass-production. Before the autonomous vehicle tested, the safety of autonomous driving system should be evaluated based on a proper test scenario. Prior to develop the test scenario, this paper reviews the licensing standards for an autonomous vehicle in California and Nevada, and the international regulations of each ADAS. To develop the scenario, the driving conditions of motorway are categorized into five modes and fundamental evaluation requirements of elements of autonomous driving system are derived. An evaluation scenario, which represents the real driving conditions, has been developed to assess the safety of autonomous vehicle. This scenario has validated by computer simulation using model predictive control (MPC) based autonomous driving algorithm.

EMOS: Enhanced moving object detection and classification via sensor fusion and noise filtering

  • Dongjin Lee;Seung-Jun Han;Kyoung-Wook Min;Jungdan Choi;Cheong Hee Park
    • ETRI Journal
    • /
    • v.45 no.5
    • /
    • pp.847-861
    • /
    • 2023
  • Dynamic object detection is essential for ensuring safe and reliable autonomous driving. Recently, light detection and ranging (LiDAR)-based object detection has been introduced and shown excellent performance on various benchmarks. Although LiDAR sensors have excellent accuracy in estimating distance, they lack texture or color information and have a lower resolution than conventional cameras. In addition, performance degradation occurs when a LiDAR-based object detection model is applied to different driving environments or when sensors from different LiDAR manufacturers are utilized owing to the domain gap phenomenon. To address these issues, a sensor-fusion-based object detection and classification method is proposed. The proposed method operates in real time, making it suitable for integration into autonomous vehicles. It performs well on our custom dataset and on publicly available datasets, demonstrating its effectiveness in real-world road environments. In addition, we will make available a novel three-dimensional moving object detection dataset called ETRI 3D MOD.

Identification of Age Threshold for Driving Performance (운전능력에 연관된 인적특성의 연령 임계점 연구)

  • Kim, Tae-Ho;Ko, Joon-Ho;Won, Jai-Mu;Hu, Ec
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.3
    • /
    • pp.71-78
    • /
    • 2008
  • This study aims to identity the age group where driving performance significantly decreases based on the data collected from the Korea Transportation Safety Authority's driver aptitude tests in 2006. The test includes following six driving simulator-based tests: estimation of moving objects' speed, estimation of stopping distance, three tests for drivers' multi-task ability, and kinetic depth perception. These six test results were utilized for the identification of the age threshold applying the CART technique, suggesting driving ability significantly be decreased over 50s. This finding was confirmed by two analyses using the accident history data containing the information of accident and non-accident drivers and the degree of accident severity. The results of this study imply that accident prevention efforts should be enhanced over a wider range of age group than the current practice where the age of 65 is generally applied for the threshold dividing senior and non-senior driver groups.

Development of Power Distribution Algorithm for Driving Efficiency Optimization of Independently Driven Vehicle (독립구동 인휠 전기자동차의 주행 효율 최적화를 위한 구동력 분배 알고리즘)

  • Park, J.H.;Song, H.W.;Jeong, H.U.;Park, C.H.;Hwang, S.H.
    • Journal of Drive and Control
    • /
    • v.11 no.2
    • /
    • pp.16-21
    • /
    • 2014
  • The purpose of this paper is to construct a control algorithm for improving the driving efficiency of 4-wheel-drive in-wheel electric vehicles. The main parts of the vehicle were modeled and the input-output relations of signals were summarized using MATLAB/Simulink. A performance simulator for 4-wheel-drive in-wheel electric vehicles was developed based on the co-simulation environment with a commercial dynamic behavior analysis program called Carsim. Moreover, for improving the driving efficiency of vehicles, a torque distribution algorithm, which distributes the torque to the front and rear wheels, was included in the performance simulator. The effectiveness of the torque distribution algorithm was validated by the SOC simulation using the FTP-75 driving cycle.