• Title/Summary/Keyword: driving control

Search Result 2,806, Processing Time 0.033 seconds

A Development of Parallel Type Hybrid Drivetrain System for Transit Bus Part 3 : Optimal Driving Control Algorithm (버스용 병렬형 하이브리드 동력전달계의 개발(III) 제 3 편;최적 주행 제어 알고리즘)

  • 조한상;이장무;박영일
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.182-197
    • /
    • 1999
  • Described in this paper is an optimal driving control algorithm which focused on the improvement of fuel economy and the minimization of pollutant emissions in the parallel type hybrid drivertrain system for transit bus. For the energy balance among components such as engine, induction machine and buttery, the algorithm for power split ration determine is proposed. When it is implemented in the hybrid electric control unit(HECU) , using the sub-optimal method and the approximate technique , it is possible to save the memory , to shorten the calculation time, and to achieve the efficient driving actually. A Shift strategy for automated manual transmission is the other side of the driving control algorithm. It enables to select the optimal gear by using several shift maps which were predefined from the proposed method in this paper, As a results of driving simulation, it is proved that these algorithms make the hybrid drivetrain system to reduce fuel consumption and emissions considerably and to have the ability to the efficient use of battery.

  • PDF

LQR Controller Design for Balancing and Driving Control of a Bicycle Robot (자전거로봇의 균형제어 및 주행제어를 위한 LQR 제어기 설계)

  • Kang, Seok-Won;Park, Kyung-Il;Lee, Jangmyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.5
    • /
    • pp.551-556
    • /
    • 2014
  • This paper proposes a balancing control and driving control of a bicycle robot based on dynamic modeling of the bicycle robot, which has been derived using the Lagrange equations. For the balancing control of the bicycle robot, a reaction wheel pendulum method has been adopted in this research. By using the dynamics equations of the bicycle robot, an LQR controller has been designed for a balancing and driving control of a bicycle robot. The performance of the balance control is verified experimentally before the driving control, which shows a stable posture within one degree vibrations. To show the dynamic characteristics of the bicycle robot during driving, a trapezoidal velocity trajectory is selected as the references. Through simulations and real experiments, the effectiveness of the proposed algorithm has been demonstrated.

An Adaptive Cruise Control Study Using a Driving Simulator

  • Nam, Hyoung-Kwon;Lee, Woon-Sung;Lee, Ji-Young;Kim, Jae-Suk
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.88.3-88
    • /
    • 2002
  • $\textbullet$ Introduction $\textbullet$ FUll-Scale Driving Simulator(KMU DS-3) $\textbullet$ Adaptive Cruise Control Implementation $\textbullet$ Driving Simulator Study $\textbullet$ Conclusions

  • PDF

HUMAN-IN-THE-LOOP EVALUATION OF A VEHICLE STABILITY CONTROLLER USING A VEHICLE SIMULATOR

  • Chung, T.;Kim, J.;Yi, K.
    • International Journal of Automotive Technology
    • /
    • v.5 no.2
    • /
    • pp.109-114
    • /
    • 2004
  • This paper presents a closed-loop evaluation of the Vehicle Stability Control (VSC) system using a vehicle simulator. Human driver-VSC interactions have been investigated under realistic operating conditions in the laboratory. Braking control inputs for vehicle stability enhancement have been directly derived from the sliding control law based on vehicle planar motion equations with differential braking. A driving simulator has been validated using actual vehicle driving test data. Real-time human-in-the loop simulation results in realistic driving situations have shown that the proposed controller reduces driving effort and enhances vehicle stability.

A Method of Accurate Position Control with a Pneumatic Cylinder Driving Apparatus

  • Jang Ji-Seong;Byun Jung-Hoan
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.7
    • /
    • pp.993-1001
    • /
    • 2006
  • In this paper, a method of accurate position control using a pneumatic cylinder driving apparatus is presented. To overcome the effect of friction force and transmission line, low friction type cylinder applied externally pressurized air bearing structure is used and two control valves attached both side of the cylinder directly. To compensate nonlinear characteristics of control valves, linearized control input derived from the relation between control input and effective area of control valve, and dither signal are applied to the valve. The controller applied to the pneumatic cylinder driving apparatus is composed of a state feedback controller and a disturbance observer. Experimental results show that the effectiveness of the proposed method and position control error of $5{\mu}m$ accuracy could be obtained easily.

Cornering Stability Control of a Personal Electric Vehicle with Direct-Drive In-Wheel Motors (직접구동 인 휠 모터를 장착한 1인승 전기자동차의 선회안정성제어)

  • Nam, Kanghyun;Eum, Sangjune
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.11
    • /
    • pp.919-924
    • /
    • 2016
  • This paper proposes a robust control design method for improving the cornering stability of a personal electric vehicle equipped with in-wheel motors. In general, vehicles undergo severe parameter variations and unpredictable disturbances with respect to a wide range of driving conditions (e.g., road surface conditions and vehicle velocity conditions). For this reason, robust control design techniques are required to guarantee consistent driving performances and robustness against various driving conditions. In this paper, an adaptive sliding mode control method is employed to enhance cornering stability by controlling the direct-drive in-wheel motors independently. Additionally, in order to confirm the effectiveness of a proposed control method, real driving tests with an experimental personal electric vehicle are performed.

Application of Auto-tunning Fuzzy PID control Algorithm for Drive System of Induction motor (유도전동기 구동을 위한 자동동조 퍼지 PID제어 앨고리즘의 적용)

  • 윤병도;정재륜;제수형
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.7 no.4
    • /
    • pp.42-50
    • /
    • 1993
  • This paper was proposed drive strategy Induction Motor using the fuzzy algorithm of auto-tuning PID control. In fuzzy control, the 1M driving system is controlled in trial and error without the mathematical modeling and using fuzzy lookup table the real time control is possible. Also, ,dividing the fuzzy rules in several zone, the stability and response of the 1M driving system is improved. The parameters of 1M are varying according to the environmental conditions, the variance of the parameters is affected with the driving characteristics of 1M. Using the fuzzy algorithm of the driving system which has the auto tuning control function for high performance, high accuracy of the driving system, a designed and proposed through the comparision with the PID control method and the driving characteristics is reviewed and analyzed.

  • PDF

Motion Profile Generation Method for Absolute Angular Error Control Mode of Gun/Turret Driving System (포/포탑 구동 시스템의 절대 각 오차 제어 모드에 대한 모션 프로파일 생성 기법)

  • Eom, Myunghwan;Song, Sinwoo;Park, Ilwoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.674-686
    • /
    • 2019
  • In this paper, we will discuss the absolute angular error control mode for the Gun/Turret driving system. The Gun/Turret driving controller receives absolute angular error calculated from the fire control system (FCS). Thus, the Gun/Turret driving controller is subjected to step command to cause residual vibration and system unstable. In order to reduce residual vibration and to ensure the system stability, we propose an error motion profile method with two types of trapezoidal and S-Curve. The validity of the proposed error motion profile method is confirmed via simulation by observing that the resulting position error, driving power, and power density satisfied the control performance.

Accurate Positioning with a Pneumatic Driving Apparatus (공기압 구동장치를 이용한 정밀위치제어)

  • Jang, Ji Seong
    • Journal of Drive and Control
    • /
    • v.12 no.4
    • /
    • pp.21-27
    • /
    • 2015
  • The accurate position control of pneumatic driving apparatus is considered in this paper. In pneumatically actuated positioning systems, accurate positioning as an electrical servo has been known to be difficult because of the friction force and compressibility of the air. For good control performance of the pneumatic system, an actuator mounted with externally pressurized air bearings is produced to compensate for friction force. For the controller design, the governing equation of the pneumatic driving apparatus is derived. In order to reduce the nonlinear characteristics of the control valve, linearized control input is derived from the relation between the effective area of the valve and the control input. The experimental results are presented to show the results of the improved position control of the pneumatic driving apparatus.

Driving Performance of Adaptive Driving Controls using Drive-by-Wire Technology for People with Disabilities

  • Kim, Younghyun;Kim, Yongchul
    • Journal of the Ergonomics Society of Korea
    • /
    • v.35 no.1
    • /
    • pp.11-27
    • /
    • 2016
  • Objective: The purpose of this study was to develop and evaluate high technology adaptive driving controls, such as mini steering wheel-lever system and joystick system, for the people with physical disabilities in the driving simulator. Background: The drivers with severe physical disabilities have problems in operation of the motor vehicle because of reduced muscle strength and limited range of motion. Therefore, if the remote control system with driver-by-wire technology is used for adaptive driving controls for people with physical limitations, the disabled people can improve their quality of life by driving a motor vehicle. Method: We developed the remotely controlled driving simulator with drive-by-wire technology, e.g., mini steering wheel-lever system and joystick system, in order to evaluate driving performance in a safe environment for people with severe physical disabilities. STISim Drive 3 software was used for driving test and the customized Labview program was used in order to control the servomotors and the adaptive driving devices. Thirty subjects participated in the study to evaluate driving performance associated with three different driving controls: conventional driving control, mini steering wheel-lever controls and joystick controls. We analyzed the driving performance in three different courses: straight lane course for acceleration and braking performance, a curved course for steering performance, and intersections for coupled performance. Results: The mini steering wheel-lever system and joystick system developed in this study showed no significant statistical difference (p>0.05) compared to the conventional driving system in the acceleration performance (specified speed travel time, average speed when passing on the right), steering performance (lane departure at the slow curved road, high-speed curved road and the intersection), and braking performance (brake reaction time). However, conventional driving system showed significant statistical difference (p<0.05) compared to the mini steering wheel-lever system or joystick system in the heading angle of the vehicle at the completion point of intersection and the passing speed of the vehicle at left turning. Characteristics of the subjects were found to give a significant effect (p<0.05) on the driving performance, except for the braking reaction time (p>0.05). The subjects with physical disabilities showed a tendency of relatively slow acceleration (p<0.05) at the straight lane course and intersection. The steering performance and braking performance were confirmed that there was no statistically significant difference (p>0.05) according to the characteristics of the subjects. Conclusion: The driving performance with mini steering wheel-lever system and joystick control system showed no significant statistical difference compared to conventional system in the driving simulator. Application: This study can be used to design primary controls with driver-by-wire technology for adaptive vehicle and to improve their community mobility for people with severe physical disabilities.