• Title/Summary/Keyword: driving comfort

Search Result 171, Processing Time 0.023 seconds

A Study on the Integrated Dynamic Control System to Improve the Lateral Dynamics and Ride Comfort of SUV Vehicles (SUV 차량의 횡방향 운동 및 승차감 개선을 위한 제동장치를 이용한 통합운동제어장치의 연구)

  • Song, Jeonghoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.4
    • /
    • pp.70-75
    • /
    • 2018
  • This paper describes an Integrate Dynamic Control system with Brake System (IDCB) for SUV vehicles. The system was developed to stabilize the lateral dynamics, maintain the steerability and improve the ride comfort on various roads. A fuzzy logic control method is used to design the IDCB. The performance of the IDCB is validated under different road and driving conditions. The results show that the IDCB tracks the reference yaw rate under all tested conditions; in addition, it reduces the body slip angle and roll angle. When a vehicle runs on a split-${\mu}$ road and a brake input is applied, the IDCB virtually eliminates the lateral dynamics. Thus, the IDCB improves the lateral stability, preserves the steerability and enhances the ride comfort of vehicles.

A Study on Determination of Complex Stiffness of Frame Bush for Ride-comfort Improvement of Body-on-frame Vehicle (프레임 차량의 주행 진동 저감을 위한 프레임 부시 복소동강성계수 크기 결정에 관한 연구)

  • Jeong, Myeon-Gyu;Kim, Ki-Sun;Kim, Kwang-Joon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.6 s.111
    • /
    • pp.619-626
    • /
    • 2006
  • Body-on-frame type vehicle has a set of frame bushes between body and frame for vibration isolation. Such frame bushes are important vibration transmission paths to passenger space for excitations during driving. In order to reduce the vibration level of passenger space, therefore, change of complex stiffness of the frame bushes is more efficient than modification of other parts of the vehicle such as body, frame and suspension. The purpose of this study is to reduce the vibration level for ride comfort by optimization of complex stiffness of frame bushes. In order to do this, a simple finite element vehicle model was constructed and complex stiffness of the frame bushes was set to be design variables. The objective function was defined to reflect frequency dependence of passenger ride comfort. Genetic algorithm and sub-structure synthesis were applied for minimization of the objective function. After optimization level at a position of interest on the car body was reduced by about 43.7 % in RMS value. Causes for optimization results are discussed.

The Analysis of Driving Workload and Gamma Waves on Curved Sections in Expressway (고속도로 커브구간에서 운전자의 운전부하와 감마파 특성분석에 관한 연구)

  • KANG, Xuejian;NAMGUNG, Moon;KIM, Won Chul;WANG, Weijie
    • Journal of Korean Society of Transportation
    • /
    • v.34 no.6
    • /
    • pp.560-569
    • /
    • 2016
  • Previous studies show that driver mental workload plays a significant role in the occurrence of traffic accidents. This study also analyzes driving workload under different road conditions especially with the brain wave data collected by a driving simulator. We use a logistic regression model to explain the relationship between driving workload and gamma brain waves. The results show that beta band of brain waves becomes broader with more curved sections while alpha band and gamma band become narrower. Since driving workload is negatively correlated with gamma band, it can be concluded that driving condition with less curved section is beneficial for reducing driving stress and increasing driving comfort.

Estimation Desirable Safety Speed based on Driving Condition on Rural Highways (도로환경특성을 고려한 안전속도 산정에 관한 연구)

  • Kim, Keun-Hyuk;Lim, Joon-Beom;Lee, Soo-Beom;Kang, Dong-Soo;Hong, Ji-Yeon
    • International Journal of Highway Engineering
    • /
    • v.14 no.4
    • /
    • pp.149-162
    • /
    • 2012
  • PURPOSES : The causes of traffic accidents can be classified into the factors of highway users, vehicles, and driving environments. Traffic accidents result from the deficiency in single or combination of these three factors. The objective of this study is to define the "potentially hazardous sections of highway" in terms of traffic safety considering these three factors. METHODS : The test drivers performed repeated driving on these highway sections. The drivers and passengers recorded the sections on which the driving was uncomfortable, and the speeds on the sections excluding the uncomfortable sections were used for the development of the model. RESULTS : The model is composed of three sub-models for each of the horizontal curve, tangent, and the section where the curve starts/ends. The safe driving behavior coefficients by the horizontal curvature were derived by comparing the maximum operating speeds at which the vehicle may slide or deviate and the speeds at which the drivers feel comfort. The safety speeds on tangent were derived by the length of tangent section considering the driver's desired speeds under the traffic condition on which the drivers hardly influenced by the other vehicles. For the sections where the curve starts/ends, the driving behaviors were classified by the distances between the curves, and the safe acceleration/deceleration speeds were derived on which the drivers enter/exit the curve sections safely. CONCLUSIONS : Safety speed could then be regarded that the model suggested in this study may be useful to define the potentially hazardous highway section and contribute the improvement of highway safety.

Development of an Analysis System for Biosignal and Driving Performance Measurements (운전 생체신호 및 운전 수행도 분석 System 개발)

  • Lee, Won-Sup;Park, Jang-Woon;Kim, Su-Jin;Yoon, Sung-Hye;Yang, Xiaopeng;Lee, Yong-Tae;Son, Joon-Woo;Kim, Man-Ho;You, Hee-Cheon
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.1
    • /
    • pp.47-53
    • /
    • 2010
  • An analysis of biosignal and performance data collected during driving has increasingly employed in research to explore a human-vehicle interface design for better safety and comfort. The present study developed a protocol and a system to effectively analyze biosignal and driving performance measurements in various driving conditions. Electrocardiogram (ECG), respiration rate (RR), and skin conductance level (SCL) were selected for biosignal analysis in the study. A data processing and analysis protocol was established based on a comprehensive review of related literature. Then, the established analysis protocol was implemented to a computerized system so that immense data of biosignal and driving performance can be analyzed with ease, efficiency, and effectiveness for an individual and/or a group of individuals of interest. The developed analysis system would be of use to examine the effects of driving conditions to cognitive workload and driving performance.

The Design Procedure of Automobile Headlamp Considering User Experience (User Experience를 고려한 자동차 전조등 설계 방안)

  • Kim, Jung-Yong;Yoon, Sang-Young;Min, Seung-Nam;Lee, Ho-Sang
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.4
    • /
    • pp.575-584
    • /
    • 2010
  • The aim of study is to suggest the design procedure of automobile headlamp by considering driver's experience in regard of the visibility and glare during nighttime driving. The characteristics of driver were investigated in terms of the drivers' cognitive ability and reaction time, headlamp specification and visibility, light source and glare. And, the degree of visual discomfort was categorized and recognized as a tool to represent the subjective user experience. The UX point of view was stated when the existing results were seemingly lacking of it. The visual comfort and safety of elderly drivers were also discussed by reviewing the studies of ageing regarding the visibility and driving responses. Finally, this study suggested how to reduce the negative effect of nighttime driving due to the height of headlamp, angle of lighting, color spectrum, discomfort glare, source of light by using the UX perspective and methodology.

Static and Dynamic Analysis of Automotive Steering System (자동차 조향 장치의 정적 및 동적 응력해석)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.3
    • /
    • pp.36-40
    • /
    • 2008
  • This study is analyzed by the simulation of automotive steering system. The maximum equivalent stress of $2.2418{\times}109Pa$ and the maximum total displacement of 0.014929m are shown at the universal joint and its lower part respectively. As the minimum cycle of 34.047 is shown at the universal joint in case of fatigue analysis, it is possible to have greatest damage at this part. In case of natural frequency analysis at vibration, its frequency of 47 to 59Hz is occurred generally. The maximum total displacement of 0.5m is shown at handle on the natural frequency of 57 to 58Hz. And the displacement over 2m is shown at the lower part of universal joint on the natural frequency of 58 to 59Hz. As the basis of the simulation analysis of steering system, passenger's comfort of car body can be improved in the design of practical part and the design effect necessary to safe driving can be promoted.

  • PDF

Evaluation of Comfortable Improvement of the Tractor Seatbelt

  • Kim, Kwan-Woo;Kim, Hyuk-Joo;Park, Keun-Sang
    • Journal of the Ergonomics Society of Korea
    • /
    • v.30 no.4
    • /
    • pp.495-501
    • /
    • 2011
  • The objective of this study was to evaluate the convenience of the tractor seatbelt. We selected four healthy men as subjects. We measured their body pressure and examined the comfort of the seatbelt, while driving 50m on three different types of agricultural road with two types of seatbelts: automatic and manual. As results, when they used manual seatbelt, subjective uncomfortable rate was much higher than the automatic seatbelt on all types of road. Especially, body pressure was undistributed while using manual seatbelt on rough road.

The Use of Electromyography for Fatigue Evaluation of Automotive Seats (자동차 시트의 피로도 평가를 위한 근전도 평가를 위한 근전도 측정기의 사용)

  • 이영신;이의신;박세진
    • Proceedings of the ESK Conference
    • /
    • 1997.04a
    • /
    • pp.10-16
    • /
    • 1997
  • The ride comfort is one of the most important indices which decide the quality of automotive seats. A subjective evaluation is the general method for comfort evaluation of automotive seats. But the subjective evaluation assess the individual sensibility using questionnaire. Therefore, a need to develop methodologies to obtain objective measurements of the fatigue evaluation is evident. In an effort to monitor muscle activity during driving electromyography (EMG) was employed. In an experimental setting the subjective evaluation was conducted using questionnaire under the static conditions (8 subjects) and the fatigue was induced in muscles using EMG under the dynamic conditions (2 drivers). The resultant EMG signals were then sampled for three different muscles. In test involving 2 subjects of similar size and build, utilizing four different automotive seats, test results support the use of EMG to quantify muscular fatigue as a viable means of objective evaluation for the different automotive seats.

  • PDF

Experiment of A Cavity-gap Coupling Model for The Safty and Comfort of A Driving Condition

  • Kang, Sang-Wook;Loh, Byoung-Gook
    • International Journal of Safety
    • /
    • v.7 no.1
    • /
    • pp.5-9
    • /
    • 2008
  • For the purpose of controlling the coupling between the car body panels and passenger compartment, experimental investigation of an acoustic cavity with an air gap is carried out to reveal how the air gap influences the acoustic modal characteristics of the cavity. The acoustic modal characteristics of the cavity is closely related with the booming noise. The experimental results show that a very small air gap can change the acoustic modal characteristics of the cavity and, as a result, the air gap can be an important factor in controlling the booming noise for comfortable and safe passenger compartment.