• Title/Summary/Keyword: driving comfort

Search Result 171, Processing Time 0.026 seconds

Methodology for Environmental Adaptation Vehicle Horn Improvements (주변 환경 순응형 자동차 경적 소음 개선 방법)

  • Kim, In Su;Yang, Choong Heon
    • International Journal of Highway Engineering
    • /
    • v.17 no.2
    • /
    • pp.135-141
    • /
    • 2015
  • PURPOSES : While driving, drivers are usually limited in communicating with others except for using the horn. Excessive use of the horn may cause noise pollution, quarrels between drivers and pedestrians, damage, etc. This study developed a methodology for environmental adaptation and improvements of vehicle horns. METHODS: In this study, we performed a literature review of previous studies and related technologies regarding the overuse and damage of the horn. The proposed methodology employed the paired comparison method, as well as the semantic differential method. These methods can consider various vehicle horns, such as the Sport Utility Vehicle(SUV) Horn, Van Horn, and Buzzer. In addition, we conducted a factor analysis in order to provide a direction for improvement of future horns. This research provides a means of complimenting existing intellectual property related to vehicle horns. RESULTS: As a result, the most preferred of the selected horns were the Buzzer at 86.7%. In addition, based on the factor analysis, the horns could be classified into pleasantness and comfort factors. The results indicate a positive reaction for various vehicle horns. The horn type and size of the process control have been properly developed considering the position of the vehicle and the surrounding noise measurements. CONCLUSIONS : Based on the proposed methodology, public and private sectors can use fundamental data for reasonable traffic-noise control policies.

Optimization of the Elastic Joint of Train Bogie Using by Response Surface Model (반응표면모델에 의한 철도 차량 대차의 탄성조인트 최적설계)

  • Park, Chan-Gyeong;Lee, Gwang-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.661-666
    • /
    • 2000
  • Optimization of the elastic joint of train is performed according to the minimization of ten responses which represent driving safety and ride comfort of train and analyzed by using the each response se surface model from stochastic design of experiments. After the each response surface model is constructed, the main effect and sensitivity analyses are successfully performed by 2nd order approximated regression model as described in this paper. We can get the optimal solutions using by nonlinear programming method such as simplex or interval optimization algorithms. The response surface models and the optimization algorithms are used together to obtain the optimal design of the elastic joint of train. the ten 2nd order polynomial response surface models of the three translational stiffness of the elastic joint (design factors) are constructed by using CCD(Central Composite Design) and the multi-objective optimization is also performed by applying min-max and distance minimization techniques of relative target deviation.

A Study on the Characteristics of the Clutch Automation Mechanism of Hybrid Vehicles (하이브리드 차량용 클러치 자동화 기구의 특성 연구)

  • Lim, Won-Sik;Park, Sung-Cheon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.5
    • /
    • pp.778-783
    • /
    • 2012
  • Due to the increase of oil price, the needs of the reduction of the fuel cost is rising. Therefore, necessity of hybrid vehicle that runs with engine and the electric motor is on the rise. In order to improve the performance of hybrid vehicle, many researches is carried out. Hybrid vehicles have been developed with the various layout such as serial type, parallel type, power split type, and multi-mode type. The multi-mode hybrid vehicles are designed to show the efficient driving characteristics at low speed and high speed. But the multi-mode system have the problem such as frequent clutch engagement. Frequent clutch engagement causes the shock of vehicles, and the shock inhibits the ride comfort. In this study, automation mechanism of clutch operation is proposed to mitigate the shock at engaging clutch. For this purpose, the dynamic characteristics of motor control is numerically analyzed by using Matlab/Simulink.

The Numerical Assessment with Modified Vehicle Rear Body Shape on the Aerodynamic Crosswind Stability Improvement (차량 후미부 형상 변경에 따른 공력 횡풍 안정성 개선에 관한 수치해석 연구)

  • Choi, Sang-Yeol;Kim, Yonung-Tae;Chang, Youn-Hyuck;Ha, Jong-Paek;Kim, Eun-Seok
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.51-53
    • /
    • 2008
  • The vehicle aerodynamic crosswind characteristics are mainly governed by the coefficient of side force and yawing moment. These performances affect not only the driving comfort which can be felt by driver but also the safety due to the instability of vehicle. The aims of this investigation are to improve the aerodynamic crosswind performance of sedan vehicle under the crosswind conditions. In order to improve the crosswind stability, numerical analysis has been performed by modifying the rear body shape of vehicle. As the results, we observed about 20% reduction of yawing moment coefficient relative to the base vehicle.

  • PDF

A Study on Designing Autonomous Parking Assistance using Fuzzy Controller (퍼지제어기를 이용한 자율주차시스템 구현에 관한 연구)

  • Choo, Yeon-Gyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.1
    • /
    • pp.70-76
    • /
    • 2013
  • Recently, the performance and function of electrical and electronic system in automotive vehicles is developing at a rapid rate with the advancement of IT technologies. Combined together with micro-controller and sensor technologies, the Vehicle Smart System (VSS) being developed to improve driver's convenience and comfort has been employed to a variety of applications. In addition to the convenience system, the Auto-parking Assistance System (AAS) that is now attracting a new attention has been already applied to some vehicles, but it is currently limited to luxury car models only. In this paper, we present a fuzzy controller that enables autonomous parking assistance without the AAS. The controller can perform the assistance with information provided from moving status, current position and steering angle as one is able to park a car based on his/her experience and knowledge for driving and parking. We have evaluated its performance of the proposed controller by simulation and tested the excellence of the controller by building a model vehicle embedded with the micro-controllers.

An Investigation on the Effects of Clutch Disk Characteristics for a Passenger Car Driveline (승용차 동력전달계에 대한 클러치 디스크 특성의 영향 고찰)

  • Kim, Young-Heub;Park, Dong-Hoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.3
    • /
    • pp.243-250
    • /
    • 2009
  • The clutch with torsional damper is installed on a passenger car with manual transmission, which not only transmits the power generated by engine to the transmission but also absorbs the shock and vibration from the engine. The torsional damper in the clutch dissipates the torsional vibration energy and eliminates the resonance in the driveline but high damping in the damper causes the increase of the vibration level which is against the comfort and durability. In this study, a dynamic model for the passenger car driveline with manual transmission was developed to investigate the vibration and the effects of characteristics of the driveline. With the dynamic model, the vibration characteristics of driveline were examined by the mode analysis and driving simulation, and the effects of hysteresis torque and spring constant were investigated. The vehicle tests with prototype torsional dampers were preformed and the test results showed good agreements with the simulation.

A Development of Parallel Type Hybrid Drivetrain System for Transit Bus Part 2 : A Development of Advanced Shift Control Algorithm for Hybrid Vehicle with Automated Manual Transmission (버스용 병렬형 하이브리드 동력전달계의 개발(II) 제2편 : 자동화변속기가 장착된 하이브리드 차량의 향상된 변속 제어 알고리듬 개발)

  • 조한상;조성태;이장무;박영일
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.5
    • /
    • pp.96-106
    • /
    • 1999
  • In this study, the advanced shift control algorithm for parallel type hybrid drivetrain system with automated manual transmission(AMT) is proposed. The AMT can be easily realized by mounting the pneumatic actuators and sensors on the clutch and shift levers of the conventional manual transmission. By using the electronic-controlled AMT, engine and induction machine, it is possible to achieve the integrated control of overall system for the efficiency and the performance of the vehicle. Performing the speed control of the induction machine and the engine, the synchronization at gear shifting and the smooth engagement of clutch can be guaranteed. And it enables to reduce the shift shock and shorten the shift time. Hence, it results in the improvement of shift quality and the driving comfort of the vehicle. Dynamometer-based experiments are carried out to prove the validity of the proposed shift control algorithm.

  • PDF

THE MECHATRONIC VEHICLE CORNER OF DARMSTADT UNIVERSITY OF TECHNOLOGY-INTERACTION AND COOPERATION Of A SENSOR TIRE, NEW LOW-ENERGY DISC BRAKE AND SMART WHEEL SUSPENSION

  • Bert Breuer;Michael Barz;Karlheinz Bill;Steffen Gruber;Martin Semsch;Thomas Strothjohann;Chungyang Xie
    • International Journal of Automotive Technology
    • /
    • v.3 no.2
    • /
    • pp.63-70
    • /
    • 2002
  • Future on-board vehicle control systems can be further improved through new types of mechatronic systems. In particular, these systems' capacities for interaction enhance safety, comfort and economic viability. The Automotive Engineering Department (fzd) of darmstadt University of Technology is engaged in research of the mechatronic vehicle corner, which consists of three subsystems: sensor tire, electrically actuated wheel brake and smart suspension. By intercommunication of these three systems, the brake controller receives direct, fast and permanent information about dynamic events in the tire contact area provided by the tire sensor as valuable control input. This allows to control operation conditions of each wheel brake. The information provided by the tire sensor for example help to distinguish between staightline driving and cornering as well as to determine $\mu$-split conditions. In conjunction with current information of dynamic wheel loads, tire pressures and friction tyre/road, the ideal brake force distribution can be achieved. Alike through integration of adaptive suspension bushings, elastokinematic behaviour and wheel positions can be adapted to manoeuver-oriented requirements.

Elder Drivers and Age-related Changes: A User Requirement Analysis for In-Vehicle Information System (고령자 친화형 차량내부 정보시스템 개발을 위한 사용자 요구사항 도출)

  • Bae, Sung-Hyun;Sabando, Jose Fernando;Kim, Sang-Ho
    • Journal of the Korea Safety Management & Science
    • /
    • v.19 no.1
    • /
    • pp.103-114
    • /
    • 2017
  • The objective of this study is to analyze the needs and determine the requirements of elder drivers for effectively using In-vehicle Information System (IVIS), by reducing cognitive and physical impact on this vulnerable group. The persona method was used to determine the relevant characteristics of older drivers. Task analysis was performed in order to obtain general interaction problems of the personas when using a common function of recent days IVIS. The results were classified in the different usability goals as general requirements, specific needs. This study suggest improvement directions in order to develop an elderly friendly IVIS; in addition, different usability metrics were suggested. In this way, elder drivers would easily interact with new powerful functions supplied by IVIS of modern cars; while improving safety and comfort of an rapidly aging society.

Estimation Algorithm of Vehicle Roll Angle and Control Strategy of Roll Mitigation Force Distribution (차량 롤 각 추정 알고리즘 및 롤 저감력 분배 제어 전략)

  • Chung, Seunghwan;Lee, Hyeongcheol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.6
    • /
    • pp.633-641
    • /
    • 2015
  • The ROM (roll over mitigation) system is a next-generation suspension system that can improve vehicle-driving stability and ride comfort. Currently, mass-produced safety systems, such as ESC (electronic stability control) and ECS (electronic control suspension), enable measurements of longitudinal and lateral acceleration as well as yaw rate through inertial sensor clusters, but they lack direct measurements of the roll angle. Therefore, in this paper, a roll angle estimation algorithm from ESC system sensors and tire normal force has been proposed. Furthermore, this study presents a method for roll over mitigation force distribution between the front and rear of a ROM system. Performance and reliability of the roll angle estimation and roll over mitigation force distribution were investigated through simulations. The simulation results showed that the proposed control algorithm and strategy are reliable during vehicle rollovers.