• Title/Summary/Keyword: drive-in process

Search Result 686, Processing Time 0.025 seconds

SILICONE POLYMER FOR ANTIFOULING/FOULING RELEASE MARINE COATING APPLICATION

  • Choi, Seok-Bong;Jepperson, John;Thomas, Johnson;Jarabek, Laura;Chisholm, Bret;Boudjouk, Philip
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.378-378
    • /
    • 2006
  • The preparation, characterization, and bio-testing of biocide incorporated silicone coatings for marine applications have been conducted. Derivatives of the biocide, Triclosan (5-chloro-2-(2, 4-dichlorophenoxy) phenol), were used to covalently attach the biocide moiety to a silicone backbone. The synthetic process allowed for control of the resulting coating's mechanical properties as well as antifouling/fouling release performance in laboratory and ocean site testing. The test results showed significantly reduce macro fouling with sustained fouling release characteristics for the coatings produced.

  • PDF

Design and Manufacturing of Composite Drive Shaft for Automobiles (자동차용 복합재료 드라이브샤프트 설계 및 성형 연구)

  • Kim, T.W.;Lee, S.K;Jun, E.J.;Kim, W.D.;Lee, D.G.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.3
    • /
    • pp.109-117
    • /
    • 1993
  • A carbon/epoxy composite drive shaft used for the power transmission of the automobiles with steel joints. Compared with the metallic drive shaft, the composite one has the weight saving of 50% with equivalent torsional strength and fatigue characteristics. In this study, the filament winding technique for the composite tube and composite/metal joining technique are estabilished. The performance test of the drive shaft is carried out. The optimal condition of the surface roughness of the steel adherend was $1.5{{\mu}m}$ to $2.5{{\mu}m}$, and the optimal condition of the bonding thickness was 0.15mm. Maximum torque and torsional stiffness of the composite drive shaft manufactured by filament winding process were found to be $210kg{\cdot}m$ and $18.5kg{\cdot}m/deg$, respectively.

  • PDF

Development of a Cutting Force Monitoring System for a CNC Lathe (CNC 선반에서의 절삭력 감지 시스템 개발)

  • Heo, Geon-Su;Lee, Gang-Gyu;Kim, Jae-Ok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.1 s.94
    • /
    • pp.219-225
    • /
    • 1999
  • Monitoring of the cutting force signals in cutting process has been well emphasized in machine tool communities. Although the cutting force can be directly measured by a tool dynamometer, this method is not always feasible because of high cost and limitations in setup. In this paper an indirect cutting force monitoring system is developed so that the cutting force in turning process is estimated based on a AC spindle drive model. This monitoring system considers the cutting force as a disturbance input to the spindle drive and estimates the cutting force based on the inverse dynamic model. The inverse dynamic model represents the dynamic relation between the cutting force, the motor torque and the motor power. The proposed monitoring system is realized on a CNC lathe and its estimation performance is evaluated experimentally.

  • PDF

Genetic Algorithm Based Continuous-Discrete Optimization and Multi-objective Sequential Design Method for the Gear Drive Design (기어장치 설계를 위한 유전알고리듬 기반 연속-이산공간 최적화 및 다목적함수 순차적 설계 방법)

  • Lee, Joung-Sang;Chong, Tae-Hyong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.5
    • /
    • pp.205-210
    • /
    • 2007
  • The integration method of binary and real encoding in genetic algorithm is proposed to deal with design variables of various types in gear drive design. The method is applied to optimum design of multi-stage gear drive. Integer and Discrete type design variables represent the number of teeth and module, and continuous type design variables represent face width, helix angle and addendum modification factor etc. The proposed genetic algorithm is applied for the gear ratio optimization and the volume optimization(minimization) of multi-stage geared motor which is used in field. In result, the proposed design optimization method shows an effectiveness in optimum design process and the new design has a better results compared with the existing design.

Dynamic Analysis of an Optical Disk Drive with Dynamic Vibration Absorber (동흡진기를 채용한 광 디스크 드라이브의 동적 해석)

  • 김남웅;김국원;황효균;김동규;이진우;김외열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.867-870
    • /
    • 2002
  • In high-speed optical disk drive, the excitation caused by rotation of a mass-unbalanced disk is a major source of vibration. The vibration can be a disturbance to the servo system, which is sufficient to cause severe failures in the reading and writing process. The vibration also causes users to feel unpleasantness. The vibration reduction is therefore essential for the reliable operation of optical disk drive. One of the approaches to reduce the vibration is a dynamic vibration absorber (DVA). In this paper, we analyze the dynamic behavior of $DVD\pmRW$ combo drive system with DVA through 12_dof rigid multi-body dynamic model. The effective location and the optimal frequency ratio are obtained from the analysis.

  • PDF

Vibration Reduction of an Optical Disk Drive with a Dynamic Vibration Absorber (동흡진기를 사용한 광 디스크 드라이브의 진동저감)

  • Kim, Nam-Woong;Sin, Hyo-Chol;Kim, Kug-Weon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.5 s.110
    • /
    • pp.529-536
    • /
    • 2006
  • In high-speed optical disk drive, the excitation caused by rotation of a mass-unbalanced disk is a major source of vibration. The vibration can be a disturbance to the servo system, which is sufficient to cause severe failures in the reading and writing process. The vibration also causes users to feel unpleasantness. The vibration reduction is therefore essential for the reliable operation of optical disk drive. One of the approaches to reduce the vibration is a dynamic vibration absorber(DVA). In this paper, we analyze the dynamic behavior of $DVD{\pm}RW$ combo drive system with DVA through 12-dof rigid multi-body dynamic model. The effective location and the optimal frequency ratio for the DVA are obtained from the analysis. The DVA are fabricated based on the analysis and its usefulness is confirmed.

Optimization of Drive-in Temperature at Doping Process for Mono Crystalline Silicon Solar Cell (단결정 실리콘 태양전지의 도핑 최적화를 위한 확산 온도에 대한 연구)

  • Cho, Sung-Jin;Song, Hee-Eun;Yoo, Kwon-Jong;Yoo, Jin-Soo;Han, Kyu-Min;Kwon, Jun-Young;Lee, Hi-Deok
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.1
    • /
    • pp.37-43
    • /
    • 2011
  • In this paper, the optimized doping condition of crystalline silicon solar cells with $156{\times}156\;mm^2$ area was studied. To optimize the drive-in temperature in the doping process, the other conditions except variable drive-in temperature were fixed. These conditions were obtained in previous studies. After etching$7\;{\mu}m$ of the surface to form the pyramidal structure, the silicon nitride deposited by the PECVD had 75~80nm thickness and 2 to 2.1 for a refractive index. The silver and aluminium electrodes for front and back sheet, respectively, were formed by screen-printing method, followed by firing in 400-425-450-550-$850^{\circ}C$ five-zone temperature conditions to make the ohmic contact. Drive-in temperature was changed in range of $830^{\circ}C$ to $890^{\circ}C$to obtain the sheet resistance $30{\sim}70\;{\Omega}/{\box}$ with $10\;\Omega}/{\box}$ intervals. Solar cell made in $890^{\circ}C$ as the drive-in temperature revealed 17.1% conversion efficiency which is best in this study. This solar cells showed $34.4\;mA/cm^2$ of the current density, 627 mV of the open circuit voltage and 79.3% of the fill factor.

The Effects of Disk Surface Topography on Baseline Instability of MR Head (디스크 표면 토포그래피가 자기저항 헤드의 베이스라인 안정성에 미치는 영향)

  • Jwa, Seong-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.2 s.173
    • /
    • pp.311-318
    • /
    • 2000
  • Several factors which influence baseline instability (BLI) phenomenon in MR drive were investigated experimentally. In particular, the role of surface topography on BLI was studied in detail. The r esults show that BLI is linearly proportional to the surface waviness with a spatial wavelength of 0.4 to 5.0 min. BLI becomes worse as the surface waviness increases. On the other hand, surface roughness which has a spatial wavelength below 25 $\mu$ m has no effect on BLI. The results further show that the effect of bias current on the BLI is amplified on the disk with worse surface waviness. The disk surface waviness is dependent on the manufacturing process and becomes an inherent surface property of media. The disk surface waviness. therefore, can not be overlooked when evaluating the media for a high-performance hard disk drive. In general, waviness is reduced mainly during grinding and polishing process during manufacturing.

Indirect Cutting Force Measurement in Milling Process using Kalman Filter by Sensing Servo motor Current (카만필터와 이송모터의 전류 감지를 이용한 밀링공정시의 설삭력 간접측정)

  • 김종원;김태용;이원희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.3-8
    • /
    • 1994
  • This paper presents a practical method of measuring the cutting force milling process by sensing the feed-drive servo motor current,avoiding the use of a dynamomenter. The relation between the cutting force and the servo motor currents is obtained after the feed-drive system of machining center is modelled. In order to measure the cutting force indirectly, the cutting force in the feed-drive system is regrared as a disturbance, and a disturbance estimator is designed using Kalman filter. A horizontal type machining center is used in the experimental study. A comparison is made between the cutting force measured from the dynamometer and the servo motor current.

  • PDF

A Study on Components Load of 5MW Wind Turbine Pitch Drive (5MW 풍력용 Pitch Drive 구성품의 부하에 관한 연구)

  • Kim, Dong-Young;Lee, In-Bum;Liang, Long-Jun;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.1
    • /
    • pp.115-120
    • /
    • 2014
  • Wind power is a type of clean energy source which does not produce carbon dioxide. The wind turbine industry is considered as a major growth industry in many countries. The main cause of wind turbine failure arises in the wind turbine gearbox, and the main type of damage occurs in the bearings and gears. Therefore, predictions of gear and bearing damage are very important to ensure the reliability of the wind turbine reducers used in these systems. In this research, in order to optimize the wind turbine reducer, a series of simulations and redesigns was done using the tool RomaxDesigner. The RomaxDesigner model was used to analyze the bearing life of the duty cycle for a 5 MW wind-turbine pitch drive and to calculate the load in operating states. The reducer was designed to satisfy the life requirement by analyzing bearing damage and calculating the stress values of the main parts of the reducer.