• 제목/요약/키워드: drive current

검색결과 1,586건 처리시간 0.032초

Optimization Study of Antenna Launching Condition for Efficient FWCD in KT-2 Tokamak

  • B.G. Hong;Kim, S.K.
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 춘계학술발표회논문집(4)
    • /
    • pp.413-418
    • /
    • 1996
  • To derive the optimimum antenna launching condition for fast wave current drive, the propagation and absorption of the ion cyclotron range of frequencies waves are studied in a KT-2 tokamak plasma. We sove the kinetic wave equation in one dimensional slab geometry with the phase-shifted antenna array to inject the toroidal momentum to electrons. The accessibility conditions and the guidelines of the optimum antenna design for the efficient current drive are derived. The dependence of the current drive efficiency on launching conditions such as the phase and spacing Is presented.

  • PDF

파워 LED의 수학적 모델링 및 정전류 적응 제어기 설계에 관한 연구 (A Study on the Mathematical Modeling and Constant Current Adaptive Controller Design for Power LEDs)

  • 김응석;김영태
    • 조명전기설비학회논문지
    • /
    • 제25권9호
    • /
    • pp.8-13
    • /
    • 2011
  • In this paper, a mathematical model of the power LED system including the drive circuit will be presented to control the power LEDs current. Using this mathematical model, the constant current adaptive controller will be designed. A constant current drive circuit for power LEDs will be configured using Buck-type converter. Precise constant current controller design is enabled by presenting the mathematical model of power LEDs including the current driving circuits. Using the mathematical model of power LEDs and its drive circuits, the constant current adaptive controller will be designed to obtain the robustness for the parameter uncertainties. In order to verify the validity of the proposed controller, computer simulations are performed.

Comparison of Performance of Brushless DC Drives under Direct Torque Control and PWM Current Control

  • Zhu Z. Q.;Liu Yong;Howe David
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제5B권4호
    • /
    • pp.337-342
    • /
    • 2005
  • Direct torque control (DTC) was originally developed for induction machine drives, and, more recently has been applied to permanent magnet brushless AC (BLAC) drives. In this paper, the performance of DTC controlled brushless DC (BLDC) drives is compared with that of PWM current controlled BLDC drives, both with and without current shaping. Both simulation and experimental results are presented, as well as the analysis of the resulting torque waveforms. It is shown that, in addition to exhibiting a fast torque response, a DTC controlled BLDC drive has a significantly lower low-frequency torque ripple than the PWM current controlled BLDC drive without current shaping, and that it is easier to implement than PWM current control with current shaping.

토크와 전류 평면에서 최대토크 운전을 위한 IPMSM의 순시 토크제어 (Instantaneous Torque Control of IPMSM for maximum Torque Drive in Torque and Current Plane)

  • 이홍균;이정철;정동화
    • 전기학회논문지P
    • /
    • 제52권1호
    • /
    • pp.1-8
    • /
    • 2003
  • The paper proposes instantaneous torque control of IPMSM for maximum torque drive of torque and current plane. The control scheme is based on the mathematical model of the motor and is applicable to the constant torque and field weakening operations. The scheme allows the motor to be driven with maximum torque per ampere(MTPA) characteristic below base speed and it maintains the maximum voltage limit of the motor wide field weakening and the motor current limit under all conditions of operation accurately. For each control mode, a condition that determines the optimal d-axis current $^id$ for maximum torque operation is derived. The proposed control algorithm is applied to IPMSM drive system for drive of wide speed range, the operating characteristics controlled that maximum torque control are examined in detail by simulation.

DC-link전류정보를 기반으로 한 새로운 SRM 구동시스템 (Novel SRM Drive System Based on the DC-link Current Information)

  • 김주진;김성곤;이주환;김태웅
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2004년도 전력전자학술대회 논문집(1)
    • /
    • pp.6-10
    • /
    • 2004
  • This paper newly proposes the SRM drive system based on DC-link current information, from which the phase currents can be estimated in accuracy and also they can be used in driving SRM instead of the phase currents. Comparing to the general drive system based on the phase current information, it is verified through the simulation(which are peformed by RMxprt and Simplorer) that the proposed SRM drive system has the good performance in dynamic and steady-state responses of the speed control. Using the DC-link current information, all of the multi-phase currents can be easily estimated in driving the SRM.

  • PDF

다중채널 직접구동 엑츄에이터의 구동전류 동일화 루프 설계 (Current Equation Loop Design of Muti-channel Direct Drive Valve Actuation)

  • 남윤수
    • 한국정밀공학회지
    • /
    • 제17권10호
    • /
    • pp.162-169
    • /
    • 2000
  • A Direct Drive Valve(DDV) hydraulic actuation system which is commonly used as an aircraft's control surface driving actuator has multi-loop control structure to ensure its safety operation. However, because of not perfect matching of one self channel characteristics with the others, the servo valve driving current of each channel can be widely different. Therefore, the long-time use of DDV actuator without any correction of these channel current offsets will cause the problem of performance or life expectancy degradation due to unwanted heats in the linear motor. A current equalization loop structure which can minimizes current offsets between channels is introduced and designed. The performance of the current equalization loop is investigated and verified through the analytic and experimental ways.

  • PDF

최적전류를 이용한 IPMSM 드라이브의 최대토크 제 (Maximum Torque Control of IPMSM Drive using Optimal Current)

  • 백정우;고재섭;최정식;강성준;장미금;문주희;정동화
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2010년도 하계학술대회 논문집
    • /
    • pp.57-58
    • /
    • 2010
  • This paper proposes maximum torque control of IPMSM drive using optimal current. This control method is applicable over the entire speed range which considered the limits of the inverter's current and voltage rated value. For each control mode, a condition that determines the optimal d-axis current $i_d$ for maximum torque operation is derived. This paper considers the design and implementation of novel technique of high performance speed control for IPMSM using multi-MFC and ANN controller. Also, this paper proposes maximum control of IPMSM drive using approximation method. This method is decreased the burden of digital signal process(DSP) in calculation of optimal current. This paper proposes the analysis results to verify the effectiveness of the MFC and ANN controller. Also it verifies the validity of maximum torque control of IPMSM drive with optimal current.

  • PDF

A Novel High-Performance Strategy for A Sensorless AC Motor Drive

  • Lee, Dong-Hee;Kwon, Young-Ahn
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제2B권3호
    • /
    • pp.81-89
    • /
    • 2002
  • The sensorless AC motor drive is a popular topic of study due to the cost and reliability of speed and position sensors. Most sensorless algorithms are based on the mathematical modeling of motors including electrical variables such as phase current and voltage. Therefore, the accuracy of such variables largely affects the performance of the sensorless AC motor drive. However, the output voltage of the SVPWM-VSI, which is widely used in sensorless AC motor drives, has considerable errors. In particular, the SVPWM-VSI is error-prone in the low speed range because the constant DC link voltage causes poor resolution in a low output voltage command and the output voltage is distorted due to dead time and voltage drop. This paper investigates a novel high-performance strategy for overcoming these problems in a sensorless ac motor drive. In this paper, a variation of the DC link voltage and a direct compensation for dead time and voltage drop are proposed. The variable DC link voltage leads to an improved resolution of the inverter output voltage, especially in the motor's low speed range. The direct compensation for dead time and voltage drop directly calculates the duration of the switching voltage vector without the modification of the reference voltage and needs no additional circuits. In addition, the proposed strategy reduces a current ripple, which deteriorates the accuracy of a monitored current and causes torque ripple and additional loss. Simulation and experimentation have been performed to verify the proposed strategy.

고장허용 운전을 위한 영구자석동기전동기의 전류센서리스 알고리즘 (Current Sensorless Algorithm of PMSM Drive for Current Fault Tolerant)

  • 임정우;윤동관;조영훈
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2017년도 전력전자학술대회
    • /
    • pp.206-207
    • /
    • 2017
  • Motor drive has used in many industrial application. In this situation the motor performance reliability has been more and more important. Sensor fault is critical defect to motor performance especially current sensor. Therefore this paper is dealing with SPMSM current sensorless algorithm in Luenberger estimation method with only a phase current information for current sensor fault situation. And the algorithm is verified with experimental results.

  • PDF

직류링크 진류정보를 기반으로 한 SRM 3상전류 추정법 (3-Phase Current Estimation of SRM Based on the DC-Link Current)

  • 김주진;김성곤;김태웅;안진우;최재호
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2005년도 전력전자학술대회 논문집
    • /
    • pp.575-577
    • /
    • 2005
  • This paper proposes the SRM drive system based on DC-link current, from which the phase currents can be estimated in accuracy and also they can be used in driving SRM instead of the three-phase currents. In additional, the detecting circuit for DC-link current is also proposed for increasing the resolution and decreasing the off-set. Comparing to the general drive system based on the phase current, it is verified through the experiment that the proposed SRM drive system has the good performance in steady-state responses of the speed control. Using the DC-link current, all of the 3-phase currents can be easily estimated in driving the SRM.

  • PDF