• Title/Summary/Keyword: drive

Search Result 8,024, Processing Time 0.035 seconds

A Modified Microstep Drive of PM Step Motor (PM 스텝 모터의 개선된 마이크로 스텝 구동)

  • Lee, Tae-Gyoo;Shin, Ki-Sang;Huh, Uk-Youl
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.15-17
    • /
    • 1996
  • In this paper, a modified microstep drive of PM step motor is presented. The open-loop drive of a step motor is attractive and widely accepted in applications of speed and position controls. However, the performance of the step motor is limited under the open-loop drive. The closed-loop control is advantages over the open-loop control not only in that step failure never occurs but that the motion is much quicker and smoother. However, a high resolution sensor is needed for detecting position and speed. The modified microstep drive is constructed as a microstep drive with speed feedback. The advantages of the proposed method is that the controller can be designed by a low resolution sensor and is simpler than other closed-loop controller. A concept of vector control is used for verifying the proposed scheme. Simulations show the performance of the proposed method and a comparison with a classic drive method.

  • PDF

Failure Examples Study for Tribological Characteristics of Drive Shaft and Axle System in Vehicles (자동차 드라이브 샤프트와 액슬 시스템의 트라이볼로지적인 특성에 관한 고장사례 고찰)

  • Lee, Il Kwon;Moon, Hak Hoon;Youm, Kwang Wook
    • Tribology and Lubricants
    • /
    • v.29 no.6
    • /
    • pp.397-402
    • /
    • 2013
  • This study examined the tribological characteristics of the drive shaft and axle system in vehicles. The first drive shaft example contained end play for a CV joint that transferred part of the transmission power to the wheel. The joint part of the drive shaft was deformed because of reduced durability due to wear. Thus, vibrations caused the body to shake and become unbalanced when the drive shaft transferred the power. The second example was the cross-section of a shaft that connected the slip-connection of the propeller shaft on the input side to the yoke flange of the output side; the durability was reduced because of corrosion. End play caused by wear between the bearing and cross-section shaft appeared to cause shaking. In the third example, a grease leak reduced lubrication and thus caused damage to the hub bearing and inside the knuckle. The failure was produced by sticking. The fourth example had noise produced by the gear and gear transfer. This was due to the backlash of the pinion and few ring gears for the differential gear. Therefore, drive shaft and axle systems must be thoroughly checked and managed to minimize and reduce failure phenomena.

Integrated Design of High-speed Feed Drive Systems (고속 이송계의 통합설계)

  • Kim, Min-Soek;Chung, Sung-Chong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.12
    • /
    • pp.2028-2038
    • /
    • 2003
  • High-speed feed drive systems have been widely used in the manufacturing and semiconductor industries. Specifications for high-speed systems require more advanced capabilities than conventional feed drive systems. It is necessary to devise special design concepts to achieve the level of performance for high-speed feed drive systems. In this paper, an integrated design method is proposed for high-speed feed drive systems in which the interactions between mechanical and electrical subsystems ought to be considered simultaneously during the design process. Based on the integrated design method, a nonlinear optimal design procedure of mechanical subsystems considering the Abbe and radius errors is accomplished through the design process of electrical subsystems satisfying the control stability and the saturation condition of actuators as well as the relative stability. Both mechanical and electrical parameters are considered as design variables. Simulations and numerical case studies show that the integrated design method of high-speed feed drive systems creates results satisfying the desired performances of mechatronic systems.

Modified Single-Phase SRM Drive for Low Torque Ripple and Power Factor Improvement (저토크리플 및 역률개선을 위한 수정된 단상 SRM 구동시스템)

  • An, Young-Joo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.8
    • /
    • pp.975-982
    • /
    • 2007
  • The single-phase switched reluctance motor(SRM) drive requires DC source which is generally supplied through a rectifier connected with a commercial source. The rectifier is consist of a diode full bridge and a filter circuit. Usually the filter circuit uses capacitor with large value capacitance to reduce ripple component of DC power. Although the peak torque ripple of SRM is small, the short charge and discharge current of the filter capacitor draws the low power factor and system efficiency. A modified single phase SRM drive system is presented in this paper, which includes drive circuit realizing reduction of torque ripple and improvement of power factor. In the proposed drive circuit, one switching part and diode which can separate the output of AC/DC rectifier from the filter capacitor is added. Also, a upper switch of drive circuit is exchanged a diode in order to reduce power switching device. Therefore the number of power switch device is not changed, two diodes are only added in the SRM drive. To verify the proposed system, some simulation and experimental results are presented.

Wire frame drive unit ofa SMA-based 3D shape display (SMA을 이용한 3차원 형상제시기의 와이어프레임 구동 유닛)

  • Chu Y.J.;Kim Y.M.;Song J.B.;Park S.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.439-440
    • /
    • 2006
  • This research proposes a novel method of shape display to present 3-dimensional objects. Shape displays allow us to feel the actual volume of the object, unlike conventional 2D visual displays of 3D objects. The proposed method employs a wire frame structure to present 3D objects. The wire frame is composed of small units driven by shape memory alloy(SMA) actuators. The drive unit is analogous to the agonist-antagonist system of animal musculoskeletal systems, where the SMA actuators serve as agonist and antagonist muscles. The force in the SMA actuator is controlled by electrical current. The drive unit is equipped with the locking mechanism so that it can sustain the external force exerted by the user as well as the own weight of the wire frame structure. By controlling the current into the SMA actuator and locking mechanism, we call control the angle of the drive unit. A chain of drive units enables presentation of 2 dimensional objects. 3 dimensional presentations are possible by collecting the chains of drive units.

  • PDF

Effects of Smooth and Textured Disks on Particle Generation in a Hard Disk Drive (하드디스크 드라이브에서 Smooth 디스크와 LZT 디스크가 입자 발생에 미치는 영향)

  • Lee Dae-Young;Huh Sun-Young;Kang Pil-Sun;Hwang Jungho;Cho Keung-Youn;Kang Tae-Sik
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.88-95
    • /
    • 2005
  • The head to disk spacing must be decreased to increase recording densities in hard disk drives. Recently, to decrease the head to disk spacing, smooth disk having no bumps onto the lading zone has used. In this research, we compared the number of particles generated in HDD with smooth and textured disks. We used a sampling method using a particle sampler and a CPC (condensation particle counter) to detect particles in HDD. First, we sampled and counted panicles generated with disk rotational speed and various rest times when the smooth disk and textured disks were used, then analyzed the sampled particles by SEM (scanning electron microscopy) and AES (auger electron spectroscopy). In results of measuring particles, more particles in case of LZT disk drive generated than that of the smooth disk drive in all test modes. The number of particles generated in the smooth disk was very low. The particle generation increased as the rest time increased (smooth/LZT disks) and more particles in case of LZT disk drive generated than that of the smooth disk drive. In results of analyzing particle components, Al, Ti, Si components were detected and we could not found differences between components in case of smooth/LZT disk drive.

  • PDF

Four-Quadrant Operation of a Single-Switch-based Switched Reluctance Drive (단일 스위치 기반의 4상한 운전 SRM 드라이브)

  • Ha, Keun-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.338-343
    • /
    • 2010
  • Low cost motor drives are being sought for high volume energy efficient home appliances. Key to the realization of such low cost motor drives is to reduce the power electronic converter in terms of its components, particularly the active devices, finding the motor with least complexity for manufacturing and a controller that could extract the desired performance from the machine and converter combination. These and other factors such as self-starting, speed control over a wide range and most of all the crowning aspect of a four quadrant operation with bare minimum number of controllable switch (or switches) remain as formidable challenges for low cost motor drive realization. In this paper, a four quadrant switched reluctance motor (SRM) drive with only one controllable switch is realized by using a two-phase machine. The theory and operation of the proposed four-quadrant SRM drive with the proposed control algorithm for its realization are described. The motor drive is modeled, simulated and analyzed to verify its feasibility for self-starting, speed control and for four quadrant operation and the simulation results are presented. Experimental results confirm the validity of the proposed control algorithm for four quadrant control of the SRM drive. The focus of the paper is mainly directed toward the control algorithm for realizing the four-quadrant operation of the two-phase SRM drive with a single controllable switch converter.

Analysis of Cascaded H-Bridge Multilevel Inverter in DTC-SVM Induction Motor Drive for FCEV

  • Gholinezhad, Javad;Noroozian, Reza
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.304-315
    • /
    • 2013
  • In this paper, analysis of cascaded H-bridge multilevel inverter in DTC-SVM (Direct Torque Control-Space Vector Modulation) based induction motor drive for FCEV (Fuel Cell Electric Vehicle) is presented. Cascaded H-bridge multilevel inverter uses multiple series units of H-bridge power cells to achieve medium-voltage operation and low harmonic distortion. In FCEV, a fuel cell stack is used as the major source of electric power moreover the battery and/or ultra-capacitor is used to assist the fuel cell. These sources are suitable for utilizing in cascaded H-bridge multilevel inverter. The drive control strategy is based on DTC-SVM technique. In this scheme, first, stator voltage vector is calculated and then realized by SVM method. Contribution of multilevel inverter to the DTC-SVM scheme is led to achieve high performance motor drive. Simulations are carried out in Matlab-Simulink. Five-level and nine-level inverters are applied in 3hp FCEV induction motor drive for analysis the multilevel inverter. Each H-bridge is implemented using one fuel cell and battery. Good dynamic control and low ripple in the torque and the flux as well as distortion decrease in voltage and current profiles, demonstrate the great performance of multilevel inverter in DTC-SVM induction motor drive for vehicle application.

Performance Evaluation of the Field-Oriented Control of Star-Connected 3-Phase Induction Motor Drives under Stator Winding Open-Circuit Faults

  • Jannati, Mohammad;Idris, Nik Rumzi Nik;Aziz, Mohd Junaidi Abdul
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.982-993
    • /
    • 2016
  • A method for the fault-tolerant vector control of star-connected 3-phase Induction Motor (IM) drive systems based on Field-Oriented Control (FOC) is proposed in this paper. This method enables the control of a 3-phase IM in the presence of an open-phase failure in one of its phases without the need for control structure changes to the conventional FOC algorithm. The proposed drive system significantly reduces the speed and torque pulsations caused by an open-phase fault in the stator windings. The performance of the proposed method was verified using MATLAB (M-File) simulation as well experimental tests on a 1.5kW 3-phase IM drive system. This paper experimentally compares the operation of the proposed fault-tolerant vector controller and a conventional vector controller during open-phase fault.

Linearization of CMOS Drive Amplifier with IMD Canceller (IMD 상쇄기를 적용한 CMOS 구동 증폭기 선형화 방법)

  • Kim, Do-Gyun;Hong, Nam-Pyo;Moon, Yon-Tae;Choi, Young-Wan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.5
    • /
    • pp.999-1003
    • /
    • 2009
  • We have designed and fabricated a linear drive amplifier with a novel intermodulation distortion(IMD) canceller using $0.18{\mu}m$ CMOS process. The drive amplifier with IMD canceller is composed of a cascode main amplifier and an additional common-source IMD canceller. Since the IMD canceller generates IM3($3^{rd}$-order imtermodulation) signal with $180^{\circ}$ phase difference against the IM3 of the cascode main amplifier, the IM3 power is drastically eliminated. As of the measurement results, $OP_{1dB}$, $OIP_3$, and power-add efficiency are 5.5 dBm, 15.5 dBm, and 21%, respectively. Those are 5 dB, 6 dB, and 13.5% enhanced values compared to a conventional cascode drive amplifier. The IMD3 of the drive amplifier with IMD canceller is enhanced more than 10 dB compared to that of the conventional cascode drive amplifier for input power ranges from -22 to -14 dBm.