• 제목/요약/키워드: drilling rotation

검색결과 36건 처리시간 0.022초

환형관내 굴착유체의 편심회전유동에 관한 수치해석적 연구 (A Numerical Study on the Eccentric Rotation Flow Characteristics of Drilling Fluid in Annuli)

  • 서병택;장영근;김덕주
    • 한국기계기술학회지
    • /
    • 제13권4호
    • /
    • pp.1-7
    • /
    • 2011
  • The paper concerns numerical study of fully developed laminar flow of a Newtonian water and non-Newtonian fluids, 0.2% aqueous of sodium carboxymethyl cellulose(CMC) solution in eccentric annuli with combined bulk axial flow and inner cylinder rotation. Pressure losses and skin friction coefficients have been measured when the inner cylinder rotates at the speed of 0~200 rpm. A numerical analysis considered mainly the effects of annular eccentricity and inner cylinder rotation. The present analysis has demonstrated the importance of the drill pipe rotation and eccentricity. In eccentricity of 0.7 of a Newtonian water, the flow field is recirculation dominated and unexpected behavior is observed. it generates a strong rotation directed layer, that two opposing effects act to create two local peaks of the axial velocity. The influences of rotation, radius ratio and working fluid on the annular flow field are investigated.

고속 복합재료 공기 주축부를 위한 추력베어링 설계 (Thrust Bearing Design for High-Speed Composite Air Spindles)

  • 방경근;이대길
    • 대한기계학회논문집A
    • /
    • 제26권10호
    • /
    • pp.1997-2007
    • /
    • 2002
  • Composite air spindles are appropriate for the high-speed and the high-precision machining as small hole drilling of printed circuit board (PCB) or wafer cutting for manufacturing semiconductors because of the low rotational inertia, the high damping ratio and the high fundamental natural frequency of composite shaft. The axial load and stiffness of composite air spindles fur drilling operation are determined by the thrust ben ring composed of the air supply part mounted on the housing and the rotating part mounted on the rotating shaft. At high-speed rotation, the rotating part of the thrust bearing should be designed considering the stresses induced by centrifugal force as well as the axial stiffness and the natural frequency of the rotating shaft to void the shaft from failure due to the centrifugal force and resonant vibration. In this work, the air supply part of the thrust bearing was designed considering the bending stiffness of the bearing and the applied load. The rotating part of the thrust bearing was designed through finite element analysis considering the cutting forces during manufacturing as well as the static and dynamic characteristics under both the axial and con trifugal forces during high-speed rotation.

지반절삭 전기에너지를 활용한 회전굴착토크 예측에 관한 연구 (A Study for Predicting Rotational Cutting Torque from Electrical Energy Required for Ground Drilling)

  • 최창호;조진우;이용수;정하익;박용부
    • 한국지반공학회논문집
    • /
    • 제23권7호
    • /
    • pp.57-64
    • /
    • 2007
  • 본 연구는 지반의 회전굴착에 필요한 굴착 토크(torque)를 회전 오거 구동에 소요되는 전기에너지를 활용하여 예측할 수 있는 방법을 제시한다. 지반회전굴착은 선굴착 말뚝 시공, 연약지반 개량을 위한 소일-시멘트 그라우팅(soil-cement grouting), 사전 지반조사 등 지반공학 분야에 흔히 사용되고 있다. 오거를 통한 회전굴착에 소요되는 전기에너지와 회전 토크의 상호 관계를 이해하기 위하여 소형 실내 실험기기를 제작하고 파일럿(pilot)실험을 수행하였다. 실험기기는 직경 $D=5{\sim}10mm$의 일반 드릴 비트를 회전하여 CBR몰드에 다짐 제작된 토사공시체를 굴착할 수 있도록 설계되었다. 드릴 비트는 감속기어를 통하여 19RPM의 정격 속도로 회전하며, 구동 모터는 25Watt 용량의 교류 유도 전동기이다. 드릴 비트로 공시체를 회전 절삭하며 구동 모터에 소요되는 전류의 증가량과 실제 비트에 작용하는 토크(torque)를 측정하였고, 선형 회귀분석을 통하여 전류 증가량과 토르크 증가량의 상호관계를 파악하였다. 구하여진 회귀분석 결과를 활용하여 굴착시 소요되는 전류 증가량으로부터 굴착토크를 예측하여 계측된 토크값과 비교하였다. 비교로부터 굴착에 소요되는 전기력을 활용하여 굴착토크를 예측할 수 있다는 결론을 얻었으며, 이로부터는 굴착 전기력의 분석을 통해 지반의 전단강도 특성을 예측할 수 있음을 증명하고자 하였다.

천공저항시험에 의한 콘크리트 터널라이닝의 역학적 특성 추정 (Estimation of the Mechanical Properties of the Concrete Tunnel Lining by Drilling Resistance Test)

  • 최순욱;성연창;정호섭;장수호
    • 한국지반공학회논문집
    • /
    • 제23권11호
    • /
    • pp.87-98
    • /
    • 2007
  • 화재 후 터널 구조물의 신속한 복구를 위하여 화재손상 구간을 정확하고 빠르게 파악하는 것이 무엇보다도 중요하다고 할 수 있다. 본 연구에서는 화재로 인한 라이닝 콘크리트의 역학적 특성 변과를 라이닝의 두께방향으로 연속적으로 측정하기 위한 천공저항시험법을 제안하고, 천공시험으로부터 측정된 천공 변수들로부터 모르타르와 콘크리트의 역학적 특성을 추정하고자 하였다. 비교적 균질한 모르타르에 대하여 일련의 천공저항시험을 실시한 결과, 분당회전수가 1,300rpm, 관입속도가 1.40mm/sec, 그리고 비트직경이 10mm인 경우에 측정된 천공 반력값의 편차가 가장 작게 나타나 최적의 시험조건으로 판별할 수 있었다. 최적 시험조건에서 모르타르에 대해 천공저항시험을 실시한 결과, 천공반력과 모르타트의 압축강도 및 탄성계수 사이의 결정계수가 각각 0.91 및 0.93으로 나타나 양호한 상관관계를 도출할 수 있었다. 또한 콘크리트에 존재하는 골재의 영향을 고려하기 위하여 반력 에너지 개념을 제시하였고 실제 압축강도와의 결정계수는 0.94로서 역시 양호한 상관관계를 도출할 수 있었다. 이상과 같이 천공 비트의 관입과 동시에 연속적으로 재료의 역학적 특성을 추정할 수 있는 천공저항시험의 적용 가능성을 파악할 수 있었다.

The use of the strain approach to develop a new consistent triangular thin flat shell finite element with drilling rotation

  • Guenfoud, Hamza;Himeur, Mohamed;Ziou, Hassina;Guenfoud, Mohamed
    • Structural Engineering and Mechanics
    • /
    • 제68권4호
    • /
    • pp.385-398
    • /
    • 2018
  • In the present paper, we offer a new flat shell finite element. It is the result of the combination of a membrane element and a bending element, both based on the strain-based formulation. It is known that $C^{\circ}$ plane membrane elements provide poor deflection and stress for problems where bending is dominant. In addition, they encounter continuity and compliance problems when they connect to C1 class plate elements. The reach of the present work is to surmount these problems when a membrane element is coupled with a thin plate element in order to construct a shell element. The membrane element used is a triangular element with four nodes, three nodes at the vertices of the triangle and the fourth one at its barycenter. Each node has three degrees of freedom, two translations and one rotation around the normal. The coefficients related to the degrees of freedom at the internal node are subsequently removed from the element stiffness matrix by using the static condensation technique. The interpolation functions of strain, displacements and stresses fields are developed from equilibrium conditions. The plate element used for the construction of the present shell element is a triangular four-node thin plate element based on Kirchhoff plate theory, the strain approach, the four fictitious node, the static condensation and the analytic integration. The shell element result of this combination is robust, competitive and efficient.

적응적체눈세분화를 위한 변절점 평면 쉘 요소 (Variable-node-flat shell element for adaptive mesh refinement)

  • 최창근;이완훈
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1994년도 가을 학술발표회 논문집
    • /
    • pp.1-8
    • /
    • 1994
  • A variable-node-flat shell element designated as CLS which has variable mid-side nodes with drilling freedom has been presented in this paper. The shell element to be applied in finite element analysis has been developed by combining a membrane element named as CLM with drilling rotation d.o.f. and plate bending element. The combined shell element possess six degrees of freedom per node. By introducing the variable-node elements which have physical midside nodes, some difficulties associated with imposing displacement constraints on irregular nodes to enforce interelement compatibility in common adaptive h-refinement on quadrilateral mesh are easily overcome. Detailed numerical studies show the excellent performance of the new shell elements developed in this study.

  • PDF

Slim hole 환형관내 고-액 2상 헬리컬 유동에 관한 연구 (A Study on the solid-liquid helical flow in a slim hole Annulus)

  • 우남섭;황영규;윤치호;김영주
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.465-470
    • /
    • 2006
  • An experimental investigation is carried out to study 2-phase vertically upward hydraulic transport of solid particles by water and non-Newtonian fluids in a slim hole concentric annulus with rotation of the inner cylinder. Rheology of particulate suspensions in viscoelastic fluids is of importance in many applications such as particle removal from surfaces, transport of proppants in fractured reservoir and cleaning of drilling holes, etc. In this study a clear acrylic pipe was used in order to observe the movement of solid particles. Annular fluid velocities varied from 0.2 m/s to 3.0 m/s. Pressure drops and average flow rate and particle rising velocity are measured. For both water and 0.2% CMC solutions, the higher the concentration of the solid particles is, the larger the pressure gradients become.

  • PDF

Sensitivity of resistance forces to localized geometrical imperfections in movement of drill strings in inclined bore-holes

  • Gulyayev, V.I.;Khudoliy, S.N.;Andrusenko, E.N.
    • Interaction and multiscale mechanics
    • /
    • 제4권1호
    • /
    • pp.1-16
    • /
    • 2011
  • The inverse problem about the theoretical analysis of a drill string bending in a channel of an inclined bore-hole with localized geometrical imperfections is studied. The system of ordinary differential equations is first derived based on the theory of curvilinear flexible elastic rods. One can then use these equations to investigate the quasi-static effects of the drill string bending that may occur in the process of raising, lowering and rotation of the string inside the bore-hole. The method for numerical solution of the constructed equations is described. With the proposed method, the phenomenon of the drill column movement, its contact interaction with the bore-hole surface, and the frictional seizure can be simulated for different combinations of velocities, directions of rotation and axial motion of the string. Geometrical imperfections in the shape of localized smoothed breaks of the bore-hole axis line are considered. Some numerical examples are presented to illustrate the applicability of the method proposed.

굴착유체의 Slim Hole 환형관 내 유동특성에 관한 연구 (A Study on the Flow of Drilling Fluids in Slim hole Annuli)

  • 서병택;우남섭;황영규
    • 설비공학논문집
    • /
    • 제18권4호
    • /
    • pp.370-376
    • /
    • 2006
  • The paper concerns an experimental study of fully developed laminar flow of a Newtonian and non-Newtonian liquid in concentric annuli with combined bulk axial flow and inner cylinder rotation. Pressure losses and skin friction coefficients have been measured for Newtonian fluid, water and non-Newtonian fluids, 0.2% aqueous of sodium carboxymethyl cellulose (CMC) and 5% bentonite solutions, when the inner cylinder rotates at the speed of $0{\sim}500$ rpm. The influences of rotation, radius ratio and working fluid on the annular flow field are investigated. And the new correlations among the skin friction coefficient, the Reynolds number and the Rossby number are presented with reasonable limits of accuracy in laminar flow regime.

경사 환형관내 고-액 혼합 유동특성에 관한 연구 (Study on Solid-liquid Mixture Flow in Inclined Annulus)

  • 김영주;김영훈;우남섭
    • 한국해양공학회지
    • /
    • 제25권5호
    • /
    • pp.15-20
    • /
    • 2011
  • This study carried out a series of experiments involving impact tests (Drop Weight type & Charpy type with a standard specimen and newly designed I-type specimen), hardness tests, and fracture surface observations of French-made roll shell steel (F), abnormal roll shell steel (M), reheated roll shell steel (R), and S25C steel under heat treatment conditiAn experimental study was carried out to study the solid-liquid mixture upward hydraulic transport of solid particles in vertical and inclined annuli with a rotating inner cylinder. The lift forces acting on a fluidized particle play a central role in many important applications such as the removal of drill cuttings in horizontal drill holes, sand transport in fractured reservoirs, sediment transport, the cleaning of particles from surfaces, etc. In this study a clear acrylic pipe was used to observe the movement of solid particles. Annular velocities varied from 0.4 to 1.2 m/s. The effect of the annulus inclination and drill pipe rotation on the carrying capacity of a drilling fluid, particle rising velocity, and pressure drop in a slim hole annulus were measured for fully-developed flows of water and aqueous solutions of CMC (sodium carboxymethyl cellulose) and bentonite. The rotation of the inner cylinder was efficient at carrying particles to some degree. For a higher particle volume concentration, the hydraulic pressure loss of the mixture flow increased because of the friction between the wall and solids or between solids.