• Title/Summary/Keyword: drift characteristics

Search Result 422, Processing Time 0.023 seconds

Charge Transport Characterization of PbS Quantum Dot Solids for High Efficiency Solar Cells

  • Jeong, Young Jin;Jang, Jihoon;Song, Jung Hoon;Choi, Hyekyoung;Jeong, Sohee;Baik, Seung Jae
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.272-276
    • /
    • 2015
  • The PbS quantum dot is an emerging photovoltaic material, which may provide high efficiency breakthroughs. The most crucial element for the high efficiency solar cells's development is to understand charge transport characteristics of PbS quantum dot solids, which are also important in planning strategic research. We have investigated charge transport characteristics of PbS quantum dot solids thin films using space charge limited conduction analysis and assessed thickness dependent photovoltaic performances. The extracted carrier drift mobility was $low-10^{-2}cm^2/Vs$ with the estimated diffusion length about 50 nm. These and recently reported values were compared with those from a commercial photovoltaic material, and we present an essential element in further development of PbS quantum dot solids materials.

Seismic performance of ductile and non-ductile reinforced concrete columns under varied axial compression

  • Safdar-Naveed Amini;Aditya-Singh Rajput
    • Structural Engineering and Mechanics
    • /
    • v.91 no.5
    • /
    • pp.427-441
    • /
    • 2024
  • Large-scale cantilever reinforced concrete (RC) columns with footing/stub were examined to determine their seismic response under a quasi-static increasing-magnitude cyclic lateral loading. Three-dimensional (3D) numerical models of RC columns with ductile and non-ductile reinforcement arrangements were developed in a Finite Element (FE) software, i.e., ABAQUS, to corroborate them with the experimental study conducted by the author. Both simulated models were validated with the experimental results in all respects, and the theoretical axial capacity of columns under concentric axial load (P0) was calculated. Subsequently, a detailed parametric study was conducted by adopting the force and reinforcement variables. These variables include axial compression ratios (ACR) varying from 0.35P0 to 0.7P0 and the amount of lateral reinforcements taken as 0.33% and 1.31% representing the non-ductile and ductile columns, respectively. This research outcome conclusively quantifies the combined effect of ACR levels and lateral reinforcement spacing on the flexural response and ductility characteristics of RC columns. The comparative analysis reveals that increased ACR levels resulted in a severe reduction in strength, deformability and ductility characteristics of both ductile and non-ductile columns. Structural response of ductile columns at higher ACR levels was comparable to the non-ductile columns, nullifying the beneficial effects of ductile design provisions. Higher ACR levels caused decline in pre-peak and post-peak response trajectories, leading to an earlier attainment of peak response at lower drift levels.

Simulation and analysis of DC characteristics in AlGaN/GaN HEMTs on sapphire, SiC and Si substrates (Sapphire SiC, Si 기판에 따른 AlGaN/GaN HEMT의 DC 전기적 특성의 시뮬레이션과 분석)

  • Kim, Su-Jin;Kim, Dong-Ho;Kim, Jae-Moo;Choi, Hong-Goo;Hahn, Cheol-Koo;Kim, Tae-Geun
    • Journal of IKEEE
    • /
    • v.11 no.4
    • /
    • pp.272-278
    • /
    • 2007
  • In this paper, we report on the 2D (two-dimensional) simulation result of the DC (direct current) electrical and thermal characteristics of AlGaN/GaN HEMTs (high electron mobility transistors) grown on Si substrate, in comparison with those grown on sapphire and SiC (silicon carbide) substrate, respectively. In general, the electrical properties of HEMT are affected by electron mobility and thermal conductivity, which depend on substrate material. For this reason, the substrates of GaN-based HEMT have been widely studied today. The simulation results are compared and studied by applying general Drift-Diffusion and thermal model altering temperature as 300, 400 and 500 K, respectively. With setting T=300 K and $V_{GS}$=1 V, the $I_{D,max}$ (drain saturation current) were 189 mA/mm for sapphire, 293 mA/mm for SiC, and 258 mA/mm for Si, respectively. In addition, $G_{m,max}$ (maximum transfer conductance) of sapphire, SiC, Si was 38, 50, 31 mS/mm, respectively, at T=500 K.

  • PDF

Characteristics of Piet Oudolf's Garden Design from the Viewpoint of the Contemporary Trends in the Use of Grasses (그라스(Grasses)류의 현대 활용추세 관점에서 본 피에트 우돌프(Piet Oudolf)의 정원 디자인 특징)

  • Park, Eun-Yeong
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.33 no.3
    • /
    • pp.66-71
    • /
    • 2015
  • Given the recent trend of natural planting, the recognized needs for new landscaping plants that have advantages in terms of climate change and maintenance, and expected increases in demands for grasses in Korea, this study is intended to investigate from the design point of view the techniques to use grasses and their significance through garden design by Piet Oudolf who is attracting international interests with the use of perennial plants and grasses and is leading the trends in modern planting design, thereby answering the question: how to best use grasses in landscaping spaces? The characteristics of Oudolf's garden design using grasses are summarized in the following conclusions: First, Oudolf combines perennial plants and grasses to make one-to-one correspondences or express expanded drifts. Here grasses mainly serve as an element to change over to other spaces or as a connecting element between image transitions. Second, the brown color and texture of grasses represent Oudolf's considerations on the temporal continuity of gardens. They express the lyricism and pictorialism of autumn and winter. Third, grasses serve to set layers in wide areas resulting in discordance between viewpoints and circulations. Oudolf repeatedly cross perennial plants and grasses using matrices, islands and distributed layering. Here grasses are used to express abstractive meanings in the settings of scenes.

A Study on the Method of Minimizing the Bit-Rate Overhead of H.264 Video when Encrypting the Region of Interest (관심영역 암호화 시 발생하는 H.264 영상의 비트레이트 오버헤드 최소화 방법 연구)

  • Son, Dongyeol;Kim, Jimin;Ji, Cheongmin;Kim, Kangseok;Kim, Kihyung;Hong, Manpyo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.2
    • /
    • pp.311-326
    • /
    • 2018
  • This paper has experimented using News sample video with QCIF ($176{\times}144$) resolution in JM v10.2 code of H.264/AVC-MPEG. The region of interest (ROI) to be encrypted occurred the drift by unnecessarily referring to each frame continuously in accordance with the characteristics of the motion prediction and compensation of the H.264 standard. In order to mitigate the drift, the latest related research method of re-inserting encrypted I-picture into a certain period leads to an increase in the amount of additional computation that becomes the factor increasing the bit-rate overhead of the entire video. Therefore, the reference search range of the block and the frame in the ROI to be encrypted is restricted in the motion prediction and compensation for each frame, and the reference search range in the non-ROI not to be encrypted is not restricted to maintain the normal encoding efficiency. In this way, after encoding the video with restricted reference search range, this article proposes a method of RC4 bit-stream encryption for the ROI such as the face to be able to identify in order to protect personal information in the video. Also, it is compared and analyzed the experimental results after implementing the unencrypted original video, the latest related research method, and the proposed method in the condition of the same environment. In contrast to the latest related research method, the bit-rate overhead of the proposed method is 2.35% higher than that of the original video and 14.93% lower than that of the latest related method, while mitigating temporal drift through the proposed method. These improved results have verified by experiments of this study.

The Cross-Sectional Characteristic and Spring-Neap Variation of Residual Current and Net Volume Transport at the Yeomha Channel (경기만 염하수로에서의 잔차류 및 수송량의 대조-소조 변동과 단면 특성)

  • Lee, Dong Hwan;Yoon, Byung Il;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.5
    • /
    • pp.217-227
    • /
    • 2017
  • The object of this study is to estimate the net volume transport and the residual flow that changed by space and time at southern part of Yeomha channel, Gyeonggi Bay. The cross-section observation was conducted at the mid-part (Line2) and the southern end (Line1) of Yeomha channel for 13 hours during neap and spring-tides, respectively. The Lagrange flux is calculated as the sum of Eulerian flux and Stokes drift, and the residual flow is calculated by using least square method. It is necessary to unify the spatial area of the observed cross-section and average time during the tidal cycle. In order to unify the cross-sectional area containing such a large vertical tidal variation, it was necessary to convert into sigma coordinate system by horizontally and vertically for every hour. The converted sigma coordinate system is estimated to be 3~5% error when compared with the z-level coordinate system which shows that there is no problem for analyzing the data. As a result, the cross-sectional residual flow shows a southward flow pattern in both spring and neap tides at Line2, and also have characteristic of the spatial residual flow fluctuation: it northwards in the main line direction and southwards at the end of both side of the waterway. It was confirmed that the residual flow characteristics at Line2 were changed by the net pressure due to the sea level difference. The analysis of the net volume transport showed that it tends to southwards at $576m^3s^{-1}$, $67m^3s^{-1}$ in each spring tide and neap tide at Line2. On the other hand, in the control Line1, it has tendency to northwards at $359m^3s^{-1}$ and $248m^3s^{-1}$. Based on the difference between the two observation lines, it is estimated that net volume transport will be out flow about $935m^3s^{-1}$ at spring tide stage and about $315m^3s^{-1}$ at neap tide stage as the intertidal zone between Yeongjong Island and Ganghwa Island. In other words, the difference of pressure gradient and Stokes drift during spring and neap tide is main causes of variation for residual current and net volume transport.

$SO_2$ and CO Removal Characteristics in Various Applied Voltage of Nonthermal Discharge Plasma in a Crossed DC Magnetic Field (전.자계상의 전원장치변화에 따른 비열방전 플라즈마의 $SO_2$와 CO가스 제거특성)

  • Lee, Geun-Taek;Geum, Sang-Taek;Mun, Jae-Duk
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.3
    • /
    • pp.215-220
    • /
    • 1999
  • $SO_2$and CO gas removal characteristics of a wire-to-cylinder type nonthermal discharge plasma reactor in various applied voltage (-dc, ac, fast rising pulse and high frequency pulse) and a crossed dc magnetic field have been investigated. The experiment has been emphasized on the oxidizing characteristics of $SO_2$ and CO gas by $O_3$ and the applying of a crossed magnetic field, which would induce the cyclotronic and drift motions of electrons making the residual time longer in the removal airgap space. And it also would enhance the energy of electrons and the electrophysicochemical actions to remove the pollutant gases effectively. It is found thatthe corona onset voltage and the breakdown voltage were decreased with increasing the crossed magnetic field and decrease initial fed $SO_2$and CO concentration. As a result, a higher ozone generation and $SO_2$ and CO gas removal rate of 20[%] can be obtained with -dc, ac and fast rising pulse corona discharges in the crossed dc current-induced magnetic field. But high frequency pulse didn't show effect in applying of a crossed magnetic field.

  • PDF

Climatic Characteristics Related with Sedimentary Process in Bransfield Strait, Antarctica (남극 브랜스필드 해협에서의 퇴적과정과 관련된 기후특성)

  • Lee, Bang-Yong;Kwon, Tae-Yong;Lee, Jeong-Soon;Yoon, Ho-Il;Yoon, Young-Jun
    • Journal of the Korean Geophysical Society
    • /
    • v.8 no.4
    • /
    • pp.173-185
    • /
    • 2005
  • This study examines the relationships among sea ice concentration, surface air temperature, surface wind, and SST (Sea Surface Temperature) in Bransfield Strait to understand the climatic characteristics and its related sedimentary process there. In analyses of the monthly data, during the austral autumn (Mar., Apr., and May), the frequency of southeasterlies is correlated positively with the sea ice concentration and negatively with the surface air temperature, whereas that of northwesterlies is reverse. These relationships are explained by the process that the southeasterlies of the cold air from the Antarctic Continent affect the ocean current around Bransfield Strait. And then the ocean current makes the sea ice generated in the Weddell Sea drift into the strait. During the spring (Sep., Oct., and Nov.), sea ice concentration and surface air perature are closely correlated with the frequency of northwesterlies with warm air mass. In the some parts of the northern boundary region, the sea ice concentration in Bransfield Strait is positively correlated with the SST during the autumn and spring. Such relationship may rather propel the sea ice melting in proportion to the sea ice concentration during the autumn.

  • PDF

Experimental investigation of SRHSC columns under biaxial loading

  • Wang, Peng;Shi, Qing X.;Wang, Feng;Wang, Qiu W.
    • Earthquakes and Structures
    • /
    • v.13 no.5
    • /
    • pp.485-496
    • /
    • 2017
  • The behavior of 8 steel reinforced high-strength concrete (SRHSC) columns, which comprised of four identical columns with cross-shaped steel and other four identical columns with square steel tube, was investigated experimentally under cyclic uniaxial and biaxial loading independently. The influence of steel configuration and loading path on the global behavior of SRHSC columns in terms of failure process, hysteretic characteristics, stiffness degradation and ductility were investigated and discussed, as well as stress level of the longitudinal and transverse reinforcing bars and steel. The research results indicate that with a same steel ratio deformation capacity of steel reinforced concrete columns with a square steel tube is better than the one with a cross-shaped steel. Loading path affects hysteretic characteristics of the specimens significantly. Under asymmetrical loading path, hysteretic characteristics of the specimens are also asymmetry. Compared with specimens under unidirectional loading, specimens subjected to bidirectional loading have poor carrying capacity, fast stiffness degradation, small yielding displacement, poor ductility and small ultimate failure drift. It also demonstrates that loading paths affect the deformation capacity or deformation performance significantly. Longitudinal reinforcement yielding occurs before the peak load is attained, while steel yielding occurs at the peak load. During later displacement loading, strain of longitudinal and transverse reinforcing bars and steel of specimens under biaxial loading increased faster than those of specimens subjected to unidirectional loading. Therefore, the bidirectional loading path has great influence on the seismic performance such as carrying capacity and deformation performance, which should be paid more attentions in structure design.

Experimental study on component performance in steel plate shear wall with self-centering braces

  • Liu, Jia-Lin;Xu, Long-He;Li, Zhong-Xian
    • Steel and Composite Structures
    • /
    • v.37 no.3
    • /
    • pp.341-351
    • /
    • 2020
  • Steel plate shear wall with self-centering energy dissipation braces (SPSW-SCEDB) is a lateral force-resisting system that exhibits flag-shaped hysteretic responses, which consists of two pre-pressed spring self-centering energy dissipation (PS-SCED) braces and a wall plate connected to horizontal boundary elements only. The present study conducted a series of cyclic tests to study the hysteretic performances of braces in SPSW-SCEDB and the effects of braces on the overall hysteretic characteristics of this system. The SPSW-SCEDB with PS-SCED braces only exhibits excellent self-centering capability and the energy loss caused by the large inclination angle of PS-SCED braces can be compensated by appropriately increasing the friction force. Under the combined effect of the two components, the SPSW-SCEDB exhibits a flag-shaped hysteretic response with large lateral resistance, good energy dissipation and self-centering capabilities. In addition, the wall plate is the primary energy dissipation component and the PS-SCED braces provide supplementary energy dissipation for system. The PS-SCED braces can provide up to 90% self-centering capability for the SPSW-SCEDB system. The compressive bearing capacity of the wall plate should be smaller than the horizontal remaining restoring force of the braces to achieve better self-centering effect of the system.