• Title/Summary/Keyword: drift characteristics

Search Result 422, Processing Time 0.022 seconds

An Experimental Method for Analysis of the Dynamic Behavior of Buoys in Extreme Environment (극한 환경하의 부표 운동성능 모형시험기법 개발)

  • Hong, Gi Yong;Yang, Chan Gyu;Choe, Hak Seon
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.3
    • /
    • pp.134-141
    • /
    • 2001
  • An experimental method to investigate the dynamic characteristics of buoys in extreme environmental condition is established. Because the buoy model requires a resonable size for accurate experiment, the test condition in model basin that satisfies the similarity law is hardly compatible with capability of test facilities. It is suggested that the linear wave component that is unable to satisfy similarity is separated with others. The model experiment is carried out with mitigated condition for the linear wave components while others including wave drift, current and wind are keeping the similarities. Then, the result can be extrapolated to give the dynamic behavior of buoys n extreme condition because linear wave component is solely responsibly to oscillatory buoy motion and other environmental components are applied as a initial tension. The similarity for current and wind conditions is viewed as equivalence of restoring forces. The validity of proposed method is examined with different types of standard ocean buoys and it indicates that the linearity of measured characteristics is assured with a limitation of resonable distance between test and estimated wave conditions.

  • PDF

Simulation of do Performance and Gate Breakdown Characteristics of MgO/GaN MOSFETs (MgO/GaN MOSFETs의 dc 특성 및 Gate Breakdown 특성 Simulation)

  • Cho, Hyeon;Kim, Jin-Gon;Gila, B.P.;Lee, K.P.;Abernathy, C.R.;Pearton, S.J.;Ren, F.
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.176-176
    • /
    • 2003
  • The effects of oxide thickness and gate length of MgO/GaN metal oxide semiconductor field effect transistors (MOSFETs) on I-V, threshold voltage and breakdown voltage characteristics were examined using a drift-diffusion model. The saturation drain current scales in an inverse logarithmic fashion with MgO thickness and is < 10$^{-3}$ A.${\mu}{\textrm}{m}$$^{-1}$ for 0.5 ${\mu}{\textrm}{m}$ gate length devices with oxide thickness > 600 $\AA$ or for all 1 ${\mu}{\textrm}{m}$ gate length MOSFETs with oxide thickness in the range of >200 $\AA$. Gate breakdown voltage is > 100 V for gate length >0.5 ${\mu}{\textrm}{m}$ and MgO thickness > 600 $\AA$. The threshold voltage scales linearly with oxide thickness and is < 2 V for oxide thickness < 800 $\AA$ and gate lengths < 0.6 ${\mu}{\textrm}{m}$. The GaN MOSFET shows excellent potential for elevated temperature, high speed applications.

  • PDF

이상파랑하에서의 해빈변화특성 해석

  • Kim, Hui-Jae;An, Hyo-Jae;Kim, Gang-Min;Lee, Jung-U
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2014.06a
    • /
    • pp.241-243
    • /
    • 2014
  • Recently, as the coastal erosion impacts greats to both social and economical aspects, each local government is trying to setup its countermeasures. However, it is necessary to survey the change of sediment movement characteristics and investigate the continuous environment change by long-term monitoring after building prevention constructions. In this study, predictions on wave deformation and sediment movement deduced through the numerical modeling are made, based on the ordinary and extraordinary wave through seasonal superiority wave direction, height, period and long-term wave characteristics on the eroded beach of central West sea.

  • PDF

Development of a Linear Stability Analysis Model for Vertical Boiling Channels Connecting with Unheated Risers

  • Hwang, Dae-Hyun;Yoo, Yeon-Jong;Zee, Seong-Quun
    • Nuclear Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.572-585
    • /
    • 1999
  • The characteristics of two-phase flow instability in a vertical boiling channel connecting with an unheated riser are investigated through the linear stability analysis model. Various two-phase flow models, including thermal non-equilibrium effects, are taken into account for establishing a physical model in the time domain. A classical approach to the frequency response method is adopted for the stability analysis by employing the D-partition method. The adequacy of the linear model is verified by evaluating experimental data at high quality conditions. It reveals that the flow-pattern-dependent drift velocity model enhances the prediction accuracy while the homogeneous equilibrium model shows the most conservative predictions. The characteristics of density wave oscillations under low-power and low-quality conditions are investigated by devising a simple model which accounts for the gravitational and frictional pressure losses along the channel. The necessary conditions for the occurrences of type-I instability and flow excursion are deduced from the one-dimensional D-partition analysis. The parametric effects of some design variables on low quality oscillations are also investigated.

  • PDF

A Study on the Forward I-V Characteristics of the Separated Shorted-Anode Lateral Insulated Gate Bipolar Transistor (분리된 단락 애노드를 이용한 수평형 SA-LIGBT 의 순방향 전류-전압 특성 연구)

  • Byeon, Dae-Seok;Chun, Jeong-Hun;Lee, Byeong-Hun;Kim, Du-Yeong;Han, Min-Ku;Choi, Yeon-Ik
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.3
    • /
    • pp.161-166
    • /
    • 1999
  • We investigate the device characteristics of the separated shorted-anode LIGBT (SSA-LIGBT), which suppresses effectively the negative differential resistance regime, by 2-dimensional numerical simulation. The SSA-LIGBT increases the pinch resistance by employing the highly resistive n-drift region as an electron conduction path instead of the lowly resistive n buffer region of the conventional SA-LIGBT. The negative differential resistance regime of the SSA-LIGBT is significantly suppressed as compared with that of the conventional SA-LIGBT. The SSA-LIGBT shows the lower forward voltage drop than that of the conventional SA-LIGBT.

  • PDF

Seismic response simulations of bridges considering shear-flexural interaction of columns

  • Zhang, Jian;Xu, Shi-Yu
    • Structural Engineering and Mechanics
    • /
    • v.31 no.5
    • /
    • pp.545-566
    • /
    • 2009
  • Bridge columns are subjected to combined actions of axial force, shear force and bending moment during earthquakes, caused by spatially-complex earthquake motions, features of structural configurations and the interaction between input and response characteristics. Combined actions can have significant effects on the force and deformation capacity of RC columns, resulting in unexpected large deformations and extensive damage that in turn influences the performance of bridges as vital components of transportation systems. This paper evaluates the seismic response of three prototype reinforced concrete bridges using comprehensive numerical models that are capable of simulating the complex soil-structural interaction effects and nonlinear behavior of columns. An analytical approach that can capture the shear-flexural interacting behavior is developed to model the realistic nonlinear behavior of RC columns, including the pinching behavior, strength deterioration and stiffness softening due to combined actions of shear force, axial force and bending moment. Seismic response analyses were conducted on the prototype bridges under suites of ground motions. Response quantities of bridges (e.g., drift, acceleration, section force and section moment etc.) are compared and evaluated to identify the effects of vertical motion, structural characteristics and the shear-flexural interaction on seismic demand of bridges.

A Design Method on Power Sense FET to Protect High Voltage Power Device (고전압 전력소자를 보호하기 위한 Sense FET 설계방법)

  • Kyoung, Sin-Su;Seo, Jun-Ho;Kim, Yo-Han;Lee, Jong-Seok;Kang, Ey-Goo;Sung, Man-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.1
    • /
    • pp.12-16
    • /
    • 2009
  • Current sensing in power semiconductors involves sensing of over-current in order to protect the device from harsh conditions. This technique is one of the most important functions in stabilizing power semiconductor device modules. The sense FET is very efficient method with low power consumption, fast sensing speed and accuracy. In this paper, we have analyzed the characteristics of proposed sense FET and optimized its electrical characteristics to apply conventional 450 V power MOSFET by numerical and simulation analysis. The proposed sense FET has the n-drift doping concentration $1.5{\times}10^{14}cm^{-3}$, size of $600{\um}m^2$ with $4.5\;{\Omega}$, and off-state leakage current below $50{\mu}A$. We offer the layout of the proposed sense FET to process actually. The offerd design and optimization methods are meaningful, which the methods can be applied to the power devices having various breakdown voltages for protection.

Loss Analysis and Soft-Switching Behavior of Flyback-Forward High Gain DC/DC Converters with a GaN FET

  • Li, Yan;Zheng, Trillion Q.;Zhang, Yajing;Cui, Meiting;Han, Yang;Dou, Wei
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.84-92
    • /
    • 2016
  • Compared with Si MOSFETs, the GaN FET has many advantages in a wide band gap, high saturation drift velocity, high critical breakdown field, etc. This paper compares the electrical properties of GaN FETs and Si MOSFETs. The soft-switching condition and power loss analysis in a flyback-forward high gain DC/DC converter with a GaN FET is presented in detail. In addition, a comparison between GaN diodes and Si diodes is made. Finally, a 200W GaN FET based flyback-forward high gain DC/DC converter is established, and experimental results verify that the GaN FET is superior to the Si MOSFET in terms of switching characteristics and efficiency. They also show that the GaN diode is better than the Si diode when it comes to reverse recovery characteristics.

A Study of Discharge Shape Changes by Magnet Arrangements in a Magnetron Cathode (마그네트론 음극의 자석 배열에 따른 방전의 형상 변화 연구)

  • Jee, Jung-Eun;Joo, Jung-Hoon
    • Journal of Surface Science and Engineering
    • /
    • v.41 no.3
    • /
    • pp.94-101
    • /
    • 2008
  • A new convenient magnet array module is designed to investigate effects of magnetic field array on magnetron discharge characteristics. Magnetic field analysis showed good agreement of measured discharge region by a CCD device which has a high quantum efficiency over visible wavelength range. OES (optical emission spectroscopy) showed major emission peaks are from electronic transitions in 400 nm range and 800 nm range. Effects of driving voltage characteristics were analyzed in a point of electron drift trajectories and ionizing collision frequencies. Pulsed dc with a fast rising and falling time was analyzed to have potential to increase ionization collisions by putting a burst of hot electrons and to raise sheath potential. From measured voltage and current waveform, maximum of -1000 V peak was generated with $-400\;V_{rms}$ conditions. Possibility of a properly designed magnetron cathode was shown to be used as a melting device. Cu was successfully melted with power density of a several tens of $W/cm^2$.

Flow Characteristics of Neutrally Buoyant Particles in 2-Dimensional Poiseuille Flow through Circular Capillaries

  • Kim, Young-Won;Jin, Song-Wan;Yoo, Jung-Yul
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2006.12a
    • /
    • pp.7-10
    • /
    • 2006
  • An experimental study has been conducted to quantitatively characterize the motion of neutrally buoyant particles in 2-dimensional Poiseuille flow through the micron-sized circular capillaries in the range of Re (Reynolds number) $\approx0.1\sim100$. $A{\mu}-PTV$ (Particle Tracking Velocimetry) system is adopted, which consists of a double-headed Nd:YAG laser, an epi-fluorescence microscope and a cooled CCD camera. Since high shear rate can be induced due to the scale effect even at low Re, it is shown that in micro scale neutrally buoyant particles in Poiseuille flow drift away from the wall and away from the center of the capillary. Consequently, particles accumulate at the equilibrium position of $0.52\sim0.64R$ with R being the radius of the capillary, which is analogous to that of tube flow in macro scale. There is a plateau in equilibrium position at small Re, while equilibrium position starts increasing at $Re\approx30$. The outermost edge of particle cluster is closer to the center of the capillary than that in previous studies due to low Re effect. The present study quantitatively presents characteristics of particle motion in circular capillaries. Furthermore, it is expected to give optimum factors for designing microfluidic systems that are to be used fur plasma separation from the blood.

  • PDF