• Title/Summary/Keyword: drawing method

Search Result 1,347, Processing Time 0.03 seconds

Blank Design in Multi-Stage Rectangular Deep Drawing of Extreme Aspect Ratio (세장비가 큰 다단계 초정밀 사각형 디프드로잉을 위한 블랭크 설계)

  • 박철성;구태완;강범수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.258-261
    • /
    • 2003
  • In this study, finite element analysis for multi-stage deep drawing process of rectangular configuration with extreme aspect ratio is carried out especially for the blank design. The analysis of rectangular deep drawing process with extreme aspect ratio is likewise very difficult with respect to the design process parameters including the intermediate die profile. In order to solve the difficulties, numerical approach using finite element method is performed in the present analysis and design. A series of experiments for multi-stage rectangular deep drawing process are conducted and the deformed configuration is investigated by comparing with the results of the finite element analysis. Additionally, to minimize amount of removal material after trimming process, finite element simulation is applied for the blank modification. The analysis incorporates brick elements for a rigid-plastic finite element method with an explicit time integration scheme using LS-DYNA3D.

  • PDF

Multi-stage Analysis of Elliptic Cup Drawing Processes with the Large Aspect Ratio by an Explicit Elasto-Plastic Finite Element Method (외연적 유한요소법을 이용한 세장비가 큰 타원형 컵 성형공정의 다단계 해석)

  • Kim, S.H.;Kim, S.H.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.9 no.3
    • /
    • pp.313-319
    • /
    • 2000
  • Finite element analysis is carried out for simulation of the multi-stage elliptic cup drawing process with the large aspect ratio. The analysis incorporates with shell elements for an elasto-plastic finite element method with the explicit time integration scheme. For the simulation, LS-DYNA3D is utilized for its wide capability of solving forming problems. The simulation result shows that the non-uniform drawing ratio at the elliptic cross section ad the small shoulder radius cause failure such as tearing and wrinkling. The result suggests the guideline to modify the tool shape for prevention of the failure during the drawing process.

  • PDF

A study on the drawing device and curing mold in CFRP rectangular pipe pultrusion process using a closed impregnation method (밀폐형 함침법을 이용한 CFRP 사각 파이프 인발성형에서 인발장치 및 경화금형에 관한 연구)

  • Kang, Byung-Soo;Yoo, Hyeong-Min
    • Design & Manufacturing
    • /
    • v.16 no.2
    • /
    • pp.60-65
    • /
    • 2022
  • In the pultrusion process for the CFRP (Carbon fiber reinforced plastic) rectangular pipe, the drawing device is eseential which can continuously produces products and draws the carbon fiber tow. In addition, since the degree of cure changes depending on the temperature and the temperature ditribution of the curing mold changes depending on the pultrusion speed, the temperature distribution of the curing mold under certain conditions must be studied before processing. In this study, in the pultrusion process using a closed impregnation method, which has several advantages compared to the general pultrusion process using a open bath impregnation method, the drawing force required to pull the carbon fiber tows and the temperature distribution of the curing mold was analyzed to design the drawing device and the curing mold efficiently.

Finite Element Analysis of Strip Drawing Including the Evolution of Material Damage (재료결함의 성장을 포함하는 스트립 드로잉 공정의 유한요소해석)

  • Hahm, Seung-Yeun;Lee, Yong-Shin
    • Transactions of Materials Processing
    • /
    • v.3 no.1
    • /
    • pp.120-132
    • /
    • 1994
  • Strip drawing of strain-hardening, viscoplastic materials with damage is analyzed by a rigid plastic finite element method. A process model is formulated using two state variables, one for strain hardening from slip dominated plastic distortion and the other for damage from growth of microvoids. Application of the model to aluminum strip drawing is given via implementation in a consistent penalty finite element formulation. The predicted density changes as a result of void growth are compared to those from experiments reported in the literature. The effects of drawing conditions such as drawing speed and die angle on the mechanical property chages are studied.

  • PDF

A study on the drawing characteristics of circular drawbead by the Finite Element Method (유한요소법에 의한 원형드로오비드의 인출특성에 관한 연구)

  • 신양호
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.3
    • /
    • pp.26-35
    • /
    • 1997
  • In this study, the drawing characteristics of circular drawbead are examined with the plane strain elastic-plastic FE Method. Both the clamping load and the drawing load investigated by varying the process variables such as drawbead radius, closing depth and friction condition. The effective strain induced by the draw bead is also investigated. In order to verify the results, the computed results are compared with the existing experimental results. It has been found that both the clamping load and drawing loads are related with the geometry of the bead rather than the lubrication conditions.

  • PDF

The deformation patterns of flange according to die geometry in the radial extrusion (레이디얼압출에서 금형구조에 따른 플렌지의 성형형태)

  • Ko, Byung-Do;Kang, Dong-myeung;Lee, Ha-Sung
    • Design & Manufacturing
    • /
    • v.2 no.1
    • /
    • pp.7-10
    • /
    • 2008
  • Restriking method is to add to process in order to get the correct size and high precision accuracy of product which is formed in pre-process. This method is widely used at bending work and drawing work. Restriking die is particularly design and used as restriking process is performed. Therefore, production cost is increasing as one process or a two process are added. In this paper, punches and die block of square shell drawing die which could be performed drawing work and restriking process by using only one die are designed in order to solve these factors. The structure of sectional die which can integrate drawing die and restriking die was developed.

  • PDF

Automatic Drawing Input by Segmentation of Text Region and Recognltion of Geometric Drawing Element (문자영역의 분리와 기하학적 도면요소의 인식에 의한 도면 자동입력)

  • 배창석;민병우
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.6
    • /
    • pp.91-103
    • /
    • 1994
  • As CAD systems are introduced in the filed of engineering design, the necessities for automatic drawing input are increased . In this paper, we propose a method for realizing automatic drawing input by separation of text regions and graphic regions, extraction of line vectors from graphic regions, and recognition of circular arcs and circles from line vectors. Sizes of isolated regions, on a drawing are used for separating text regions and graphic regions. Thinning and maximum allowable error method are used to extract line vectors. And geometric structures of line vectors are analyzed to recognize circular arcs and circles. By processing text regions and graphic regions separately, 30~40% of vector information can be reduced. Recognition of circular arcs and circles can increase the utilization of automatic drawing input function.

  • PDF

The Influence of Drawing Parameters on Sausaging and Critical Current of Bi-2223/Ag HTS Wires. (Bi-2223/Ag 고온 초전도 선재의 임계전류 및 소세징에 미치는 인발 조건의 영향)

  • 하홍수;오상수;하동우;김상철;권영길;류강식
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.488-491
    • /
    • 2000
  • Bi-2223/Ag superconducting wires have been mainly prepared by a powder-in-tube method. The drawing and the rolling are main processes to increase the core density and wire length. In the fabrication of long wire, especially, the drawing should be precisely controlled to assure the filament homogeneity. In this paper, the influences of drawing die angle, bearing length and reduction ratio on the sausaging and the critical current density of the wire are investigated. Single cored and multi-filamentary wires are fabricated by PIT method with different conditions. The core densities and sausaging in the wires are investigated and are discussed regarding their relationship to the I$_{c}$. It was made clear that the geometry of drawing die is sensitively dependent on the sausaging. The improvement of I$_{c}$ was achieved by reducing the die angle and high core density.ity.

  • PDF

A Study of punch and die plate for restriking mold of structure engineering design (리스트라이킹 금형용 펀치와 다이플레이트의 구조 설계에 관한 연구)

  • Kim, Sei-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.4
    • /
    • pp.708-712
    • /
    • 2007
  • Restriking is a shaping method added to the processed products to get higher precision and accuracy in the press die process. This method is frequently used in bending works and drawing works. The purpose of this research is to develop a design for rectangular drawing die punch and die block form which enables drawing formation and restriking in one set.

  • PDF

The Applicatiion of Finite Element Method to Process Design Considering Forming Limit in Deep Drawing (성형한계를 고려한 디프 드로잉 공정설계에 대한 유한 요소 해석)

  •  
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.06a
    • /
    • pp.74-82
    • /
    • 1998
  • The limit drawing ratio (LDR) is a major process parameter in the process design of deep drawing. If the actual drawing ratio is greater than the LDR for a particular stage, then an intermediate stage has to be added to the process sequence to avoid failure during the ratio. In this study, the optimal process design considering forming limit is performed for the first-drawing and redrawing by using finite element method combined with ductile fracture criterion. The LDR and the site of fracture initiation are predicted by means of the fracture criterion. From the results of finite element analysis, the optimal value of drawing ratio is obtained, which contributes to the more uniform distribution of thickness and the smaller values of the ductile fracture in final cup.