• Title/Summary/Keyword: drawing characteristics

Search Result 684, Processing Time 0.02 seconds

A Study on the Weldline Movement and Formability of Tailored Blanks in Square Cup Drawing (사각통 드로잉시 테일러드 블랭크의 용접선이동 및 성형성에 관한 연구)

  • ;Hisashi Hayashi;Matsuo Usuda
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.42-45
    • /
    • 1997
  • Weldline movement of tailored blanks originates from two sources, primary and secondary. Primary movement occurs by geometrical reason, that is, just scratched lines on the no-weld blanks move during drawing to be fitted to geometrical change. Secondary movement is induced by the characteristics of tailored blanks itself. The primary movement was mainly dependent on the weldline location and not affected by the type of material. The secondary movement caused by laser welding and/or small strength difference in this study was not dominant compared with primary movement. The formability of tailored blanks always inferior to those of original blanks. This is due to the existence of hardened weld bead. The closer a weldline is to punch corner where drawing is most active, the worse its formability becomes. This is because the weldline prohibits the drawing process. It was confirmed by measuring diagonal length at the blank corner. The mode of fracture was changed form wall break to draw break when the weldling was close to the punch corner.

  • PDF

HEAT TRANSFER ANALYSIS ON THE PREFORM HEATING AND THE GLASS FIBER DRAWING IN A GRAPHITE FURNACE FOR OPTICAL FIBER MANUFACTURING PROCESS (광섬유 생산공정용 퍼니스 내의 모재 가열 및 유리섬유 인출에 대한 열전달 해석)

  • Kim, K.;Kim, D.;Kwak, H.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.88-91
    • /
    • 2011
  • Glass fiber drawing from a silica preform is one of the most important processes in optical fiber manufacturing. High purify silica preform of cylindrical shape is fed into the graphite furnace, and then a very thin glass fiber of 125 micron diameter is drawn from the softened and heated preform. A computational analysis is performed to investigate the heat transfer characteristics of preform heating and the glass fiber drawing in the furnace. In addition to the dominant radiative heating of preform by the heating element in the furnace, present analysis also includes the convective heat transport by the gas flowing around the preform that experiences neck-dawn profile and the freshly drawn glass fiber at high fiber drawing speed. The computational results present the effects of gas flow on the temperature of preform and glass fiber as well as the neck-down profile of preform.

  • PDF

Steady-Flow Characteristics of Bundle Fluid in Drawing (인발 집속유체의 정상유동 특성)

  • Huh You;Kim Jong-Seong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.7 s.250
    • /
    • pp.612-621
    • /
    • 2006
  • Drawing is a mechanical operation attenuating material thickness to an appropriate level for the next processing or end usage. When the input material has a form of bundle or bundles made of very thin and long shaped wires or fibers, this attenuation operation is called 'bundle drawing' or 'drafting'. Bundle drawing is being used widely in manufacturing micro sized wires or staple yarns. However, the bundle processed by this operation has more or less defects in the evenness of linear density. Such irregularities cause many problems not only for the product quality but also for the efficiency of the next successive processes. In this research a mathematical model for the dynamic behavior of the bundle fluid is to be set up on the basis of general physical laws containing physical variables, i.e. linear density and velocity as the dynamic state variables of the bundle fluid. The governing equations resulting from the modeling show that they appear in a slightly different form from what they do in a continuum fluid. Then, the governing equations system is simplified in a steady state and the bundle dynamics is simulated, showing that the shape of the velocity profiles depends on two model parameters. Experiments confirm that the model parameters are to be well adjusted to show a coincidence with the theoretical analysis. The higher the drawing ratio and drawing speed we, the more sensitive becomes the bundle flow to exogenous disturbances.

The Effects of Combined Complex Exercise with Abdominal Drawing-in Maneuver on Expiratory Abdominal Muscles Activation and Forced Pulmonary Function for Post Stroke Patients (복합운동과 복부 끌어당김 조정 훈련의 병행이 뇌졸중 환자의 호기 시 복부근육 활성도 및 노력성 폐기능에 미치는 영향)

  • Yun, Jeung-Hyun;Kim, Tae-Soo;Lee, Byung-Ki
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.8 no.4
    • /
    • pp.513-523
    • /
    • 2013
  • PURPOSE: The purpose of this study was to investigate characteristics of the forced pulmonary function test effect and abdominal muscles activation by combined complex exercise with abdominal drawing-in maneuver training of chronic stroke patients. METHODS: 14 post stroke patients(10 males and 4 females) involved voluntary this study and we divided two groups into CEG(complex exercise group) and CEAG (complex exercise and abdominal drawing-in maneuver group).(n=7, per goup). Each groups implicated the 2 times, 30minute exercises for 6 weeks a day. The CEAG performed the complex exercise 15 minutes and 15 minutes of abdominal drawing-in maneuver. For data analysis, the mean and standard deviation were estimated; non-parametric independent t-test was carried out. RESULTS: According to the study, in the combined complex exercise with abdominal drawing-in maneuver group, FVC and activation of transversus abdominis/internal oblique were statistically significant difference compared to the complex exercise group. CONCLUSION: These results indicate that the combined complex with abdominal drawing-in maneuver was efficient in enhancing abdominal muscles activation and pulmonary function of chronic stroke patients.

Effect of Uniaxial Drawing Conditions on the Orientation of Poly (ethylene 2,6- naphthalate) (일축 연신 조건에 따른 Poly(ethylene 2,6-naphthalate) 배향에 관한 연구)

  • 진병석;이성효;이광희
    • Polymer(Korea)
    • /
    • v.25 no.5
    • /
    • pp.699-706
    • /
    • 2001
  • The effects of uniaxial drawing conditions on the molecular orientation of poly (ethylene 2,6-naphthalate) (PEN) are investigated. Birefringence measurements show that the orientation is significantly enhanced at high draw ratio, low drawing temperature, and fast drawing speed. The characteristics of orientation examined by FTIR- ATR dichroism method represent almost same results. Amorphous orientation function increases with drawing rate at $120^{\circ}C$, but it decreases with drawing rate at $141^{\circ}C$. These behaviors can be explained with the relation between crystallization and chain relaxation rates. It is observed that the orientation of PEN film is accompanied by significant alignment of the naphthalene rings of PEN parallel to the film surface.

  • PDF

Comparative Study on Rolling Characteristics of Hexagonal Bar with Special Alloy for Advancing Drawing System (인발성형 시스템 고도화를 위한 특수합금 육각봉의 압연특성 비교 해석 연구)

  • Lee, Young-Sik;Yang, Young-Joon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.5
    • /
    • pp.96-102
    • /
    • 2021
  • Hexagonal bolt, nut, fittings, and high-pressure valves with special alloy play an important role in many industrial products. Numerical analysis was conducted to obtain data for designing a new drawing system. This study aims to predict the rolling force of the new drawing system compared to that of the established drawing system. The rolling force of the new drawing system was predicted using numerical analysis by assuming that it is in proportion to deformation. The rolling forces of Mo, Ti, and W were approximately 1.4, 0.5, and 2.5 times those of SUS. Because the values of ultimate strength of special alloys were more close to numerical analysis, the values of ultimate strength could be used to predict the rolling force of the new drawing system without numerical analysis in field.

Variation of Impact Characteristics of ISB Panels with a Pyramidal Inner Structure According to Joining Technologies (피라미드형 내부구조체를 가진 ISB 판넬의 접합형태에 따른 충격 특성 변화)

  • Ahn, Dong-Gyu;Moon, Gyung-Jae;Jung, Chang-Gyun;Yang, Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.9
    • /
    • pp.110-118
    • /
    • 2007
  • ISB (Inner structured and bonded) panel with a pyramidal inner structure is actively developing to reduce the weight and to improve the crashworthiness of the material. The objective of this paper is to investigate into the variation of impact characteristics of ISB panels with a pyramidal inner structure according to joining types between skin sheets and inner structures. Several drop impact tests have been performed. In order to examine the impact characteristics at a drawing condition, drawing type of experimental set-up has been proposed. From the results of the experiments, the influence of joining types between skin sheets and the inner structures on the characteristics of the deformation, the energy absorption and the failure has been quantitatively examined. In addition, it has been shown that maximum load decreased and the maximum displacement increases as the joining type changes from the bonding to the welding. The results of the observation of the specimen have been shown that major wrinkles form in the minor crimping direction irrespective of the joining types. Through the comparison of the experimental results for bonding and welding specimens, it has been shown that the absorption energy of the bonded specimen is nearly 1.3-1.5 times of the welded specimen at the same displacement.

Categorization of motion drawing for educating animation -A basic study on the development of educational model applied with principles of brain science (애니메이션 교육을 위한 모션드로잉 범주화 -뇌과학 원리를 적용한 교육모형 개발 기초연구)

  • Park, Sung Won
    • Cartoon and Animation Studies
    • /
    • s.35
    • /
    • pp.1-27
    • /
    • 2014
  • This study is a process of studying an alternative educational model and a preceding analysis process of the study where a teaching method considering the brain function, learning and creative mechanism is applied with a perspective of effectively increasing the animation drawing ability. Recently, studies in each field of study is not simply limited to one major but are attempting to produce subdivided integrated educational contents through integrated study activities with other fields. It is because for any field, it has a complex structure of humanistic experience and this is the same for artistic fields. Especially, in the field of animation, a specialized area is subdivided so when looking only at the education related to the drawing, the items required for expertise should be clarified and the development of a systematic educational method is required. Therefore in this study, a literature study result to design the educational model suitable for professional characteristics of animation education method is proposed. The study aims to conceptualize and categorize the meaning of drawing that can refine the basic ability for education of animation field to suit the characteristics of majoring field. Afterwards, the components are derived through re-established concept of drawing and categories, and this becomes the basis for the process of materializing the study goal which is the follow-up work. As a result, the components are examined by defining the meaning of drawing as the motion drawing due to the characteristics of the picture contents field, and used as a basis for planning the educational model applied with brain scientific creative-learning principles.

A Study on the Drawings on the Design and Construction after the Middle of the Choson Dynasty (조선 중기 이후의 설계와 시공도면에 관한 연구)

  • 전영옥
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.28 no.6
    • /
    • pp.16-28
    • /
    • 2001
  • The purpose of this study is to arrange the terminology of the drawings in Chosun Dynasty, and to investigate the characteristics of drawings after the middle of Chos n Dynasty. This study is based on the and analysis of historic documents and drawings including drawings from China and Japan. In order to accomplish this, the drawings for the process of design were studied first, and the techniques of drawing were studied next in comparison with Japanese drawing techniques. Lastly, the technicians of drawing were studied. The results of this study were as follows; 1) Though the procedures of design Choson dynasty were not divided into planning, designing, construction and maintenance just like those of modern society, a variety of drawings in that time were used in each level. 2) The drawings in Choson Dynasty ere divided into Tohyong and Tosol, and mostly, those for design and construction were Tohy ng. 3) Based on the interpretation of Japanese drawings, several suggestions were presented to solve the questions of the drawing techniques for design and construction. 4) The technicians of drawing were the painters who were trained in a government organization in charge of royal paintings. In the future, research of this area should be continued in to deepen study on drawings as historical materials. This research provides meaningful of guidance in the analysis of historic drawing paintings.

  • PDF

A Study on the Development of Deep Drawing Press using a Rotating Disk (회전원판을 이용한 디프드로잉용 프레스 개발에 관한 연구)

  • 황병복;강성호;김진목
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.06a
    • /
    • pp.69-78
    • /
    • 1994
  • A rotating disk is introduced to be applied to the deep drawing press. Several characteristics are summarized to see the basics of deep drawing of sheet metal in terms of load-stroke relationship and formability. Many conventional drawing presses, which are mostly link-type presses, are also shown to be compared with the rotating disk-type press. Performances of the new press are kinematically analyzed it terms of load-main gear angle relationship, stroke-gear angle relationship, and slide velocity-gear angle relationship and they are compared with those of conventional types', e. g. crank press and so on. The comparison show kinematically better performance of rotating disk-type press than that of conventional ones. Also, the new press are proven to be one of the best press for mass production in terms of cycle time. Applicability of the rotating disk press to deep drawing and cold forging work is introduced. The new press is described in terms of economy such that the cost of new press would be much lower than those of conventional types'.