• 제목/요약/키워드: drainage tank

검색결과 46건 처리시간 0.022초

도시내 배수설비 슬러지가 악취에 미치는 영향 연구 (Effect of municipal sludge from drainage facility on foul smell)

  • 유대현;박지훈;이용훈;이장훈;강선홍
    • 상하수도학회지
    • /
    • 제28권3호
    • /
    • pp.315-324
    • /
    • 2014
  • The residents' odor complaint is steadily increasing by odor causing from sewage system. A current drainage facilities and septic tank are included in the individual sewerage according to Sewerage Act. However, definitions and legal standards of drainage tank are insufficient. In addition, specifications and maintenance standards related to structure and size are not established. In this research, effect of drainage tank in individual sewage facilities on the odor occurrence was studied and the concentrations of $H_2S$ and composite odor were measured. From the measurements, the concentration of $H_2S$ and composite odor were 1 ppm ~ 5 ppm and 1.04 OU ~ 4.05 OU, respectively, before pump operation. Also, the concentration of $H_2S$ and composite odor were 5 ppm ~ 33 ppm and 5.10 OU ~ 35.04 OU, respectively, after pump operation. The concentration of SS in the effluent from drainage tank was ranged from 840 mg/L to 1,980 mg/L. These high concentration of SS seemed to be the major source of foul smell when high concentrated suspended solids in the public sewerage system were decomposed and then emitted. In this research, correlation coefficient ($R^2$) between $H_2S$ and composite odor before and after pumping were 0.925 and 0.918, respectively.

용수로상의 배수구조물계획에 대하여 -배수잠관을 중심으로- (On the Planning of Drainage Structures in Irrigation Channels. -Special Emphasis on the Drainage Inverted Siphon-)

  • 김철기
    • 한국농공학회지
    • /
    • 제12권4호
    • /
    • pp.2078-2083
    • /
    • 1970
  • The purpose of this study is to give the data neccesary for improving the planning of drainage structures, specially inverted siphons, in irrigation channels. With the samples of 15 drainage inlets, one drainage flume, 16 drainage inverted siphons and 6 drainage culverts in the 3 lines of irrigation channel under Chong-Won Irrigation Association, author abtained the following results. 1. It is presumed that design drainage discharge should be determined with some additional reserves, on the basis of the maximum rainfall intensity in local area and the size of drainage area on the topographical map, avoiding the way of eye measure. 2. Location of drainage inlet should be kept away from the place where topography can make lots of wash load, but when unavoidably allowing the inflow into irrigation channel, wash load outlet with even the purpose of drainage, or drainage flume in stead of drainage inlet should be taken account of. 3. It is presumed that drainage flume may be the structure which can perform its function from a structural point of view as far as topography permits. 4. Drainage inverted siphon should be avoided at any place as much as possible; a) In case that location of the siphon would be permitted only at paddy field, drainage area hauing the amount of discharge which requires more than 90cm in diameter could only be allowed. b) In this case, crest elevation of the tank of both inlet and outlet, at least, should not be lower than the surface level of paddy field. c) As far as topography and stratum permit, ratio of depth of outlet tank to head drop should be decreased as much as possible so that discharging efficiency of wash load could increase. d) In case of avoiding the setting of the siphon, irrigation aqueduct, irrigation inverted siphon, or drainage flume should be recommended in accordance with topography. 5. Discharging capability of wash load by drainage culvert appeared to depend hardly upon the diameter of the culvert, but greatly upon the location, specially near village, for there stones and dirts dumped may considerably be piled up. So, a counter plan for that is required.

  • PDF

제강슬래그, 우분 및 석회석을 활용한 폐 석탄광의 산성광산배수 처리 (Remediation of Acid Mine Drainage from an Abandoned Coal Mine Using Steel Mill Slag, Cow Manure and Limestone)

  • 정명채
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제10권3호
    • /
    • pp.16-23
    • /
    • 2005
  • 중금속과 황산이온의 농도가 높은 산성광산배수(AMD)를 배출하는 강원도 정선군에 위치한 삼척탄좌 정암광업소 유출수를 대상으로 제강 슬래그, 우분 및 석회석 등을 활용하여 처리실험을 수행하였다. Batch test와 적용성 시험 결과, 원수 1 L당 15 g의 제강 슬래그, 15 g의 우분 및 500 g의 석회석이 최적의 기질물질 양으로 조사되었다. 이를 기초로 제강 슬래그, 우분과 석회석으로 충진한 SAPS조, 침전조, 산화조 순서로 구성된 처리시스템을 구성하였다. 총 54일간 시행된 실험결과, 원수에 비해 pH의 상승(3.0에서 8.3)과 더불어 61%의 황산염이온 농도가 저감되었다 (1,042 mg/L에서 409 mg/L). 또한, 초기농도 대비 최종 방류수의 중금속 처리효율은 매우 높은 수준으로써 99.9% 이상의 Al, Fe, Zn과 92.6% Mn이 제거되었다. 즉, 제강 슬래그, 우분 및 석회석을 활용하면 산성광산수의 중화와 금속 침전효과를 얻을 수 있음을 확인하였다.

영산호 운영을 위한 홍수예보모형의 개발(I) -나주지점의 홍수유출 추정- (River Flow Forecasting Model for the Youngsan Estuary Reservoir Operations(I) -Estimation Runof Hydrographs at Naju Station)

  • 박창언;박승우
    • 한국농공학회지
    • /
    • 제36권4호
    • /
    • pp.95-102
    • /
    • 1994
  • The series of the papers consist of three parts to describe the development, calibration, and applications of the flood forecasting models for the Youngsan Estuarine Dam located at the mouth of the Youngsan river. And this paper discusses the hydrologic model for inflow simulation at Naju station, which constitutes 64 percent of the drainage basin of 3521 .6km$^2$ in area. A simplified TANK model was formulated to simulate hourly runoff from rainfall And the model parameters were optirnized using historical storm data, and validated with the records. The results of this paper were summarized as follows. 1. The simplified TANK model was formulated to conceptualize the hourly rainfall-run-off relationships at a watershed with four tanks in series having five runoff outlets. The runoff from each outlet was assumed to be proportional to the storage exceeding a threshold value. And each tank was linked with a drainage hole from the upper one. 2. Fifteen storm events from four year records from 1984 to 1987 were selected for this study. They varied from 81 to 289rn'm The watershed averaged, hourly rainfall data were determined from those at fifteen raingaging stations using a Thiessen method. Some missing and unrealistic records at a few stations were estimated or replaced with the values determined using a reciprocal distance square method from abjacent ones. 3. An univariate scheme was adopted to calibrate the model parameters using historical records. Some of the calibrated parameters were statistically related to antecedent precipitation. And the model simulated the streamflow close to the observed, with the mean coefficient of determination of 0.94 for all storm events. 4. The simulated streamflow were in good agreement with the historical records for ungaged condition simulation runs. The mean coefficient of determination for the runs was 0.93, nearly the same as calibration runs. This may indicates that the model performs very well in flood forecasting situations for the watershed.

  • PDF

유류탱크 수명과 구조 개선 방안에 대한 사례연구 (A Case Study on the Method to Improve on the Structure of Oil Tank)

  • 윤태국;이송
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제10권2호
    • /
    • pp.185-190
    • /
    • 2006
  • 유류탱크 구조물을 대상으로 기 실시한 유류탱크 정밀안전진단 결과를 중심으로 구조적 문제점을 도출하고 이를 근간으로 내구년수를 결정하는 기법에 대하여 제시하고자 하였으며 추가로 구조적 개선사항도 제안하였다. 정밀안전진단 결과 폐기된 유류탱크를 분석하면 시공년도와는 상관없이 시공, 유지관리 등의 정도에 따라 상이한 것으로 분석되며, 탱크형식별로는 매립형의 건전성이 가장 취약한 상태이다. 또한 손상원인별로 분석한 결과 강재 부분에 대해서는 강재의 두께, 용접 불량이 가장 많은 상태이며, 기초의 영향에 따른 부등침하의 원인도 다수 조사되었다. 또한, 유류탱크의 수명은 일반적으로 30년 정도를 예상수명으로 관리하고 있으며 연구 결과 내구년수는 30년으로 추정 할 수 있었다.

영일만 유입오염부하량과 수질의 시ㆍ공간적 변동특성(I) - 하천유량과 유입오염부하량의 계절변동 - (Spatial and Temporal Variation Characteristics between Water Quality and Pollutant Loads of Yeong-il Bau(I) - Seasonal Variation of River Discharge and Inflowing Pollutant Loads -)

  • 윤한삼;이인철;류청로
    • 한국해양공학회지
    • /
    • 제17권4호
    • /
    • pp.23-30
    • /
    • 2003
  • This study investigates the seasonal variation and spatial distribution characteristics of pollutant load, as executing the quality valuation of pollutant load inflowing into Yeong-il Bay from on-land including the Hyeong-san River. Annual total pollutant generating rate from Yeong-il Bay region are 202ton-BOD/day, 620ton-SS/day, 42ton-TN/day, and 16ton-TP/day, respectively. Particularly, the generating ration of the pollutant loads from the Hyeong-san River is greater than that of any other watershed of the Yeong-il Bay, of which BOd is about 78.2%, SS 88.5%, T-N 62.5%, T-P 73.1%, As calculating Tank model with input value of daily precipitation and evaporation of 2001 year in drainage basin of the Hyeong-san River, the estimated result of the annual river discharge effluence from this river is 830106㎥, As a result to estimating annual effluence rate outflowing at the rivers from each drainage basin. annual inflow pollutant rates are 10,633ton-BOD/year, 19,302ton-SS/year, 15,369ton-TN/year, 305ton-TP/year, respectively. The population congestion region of the Pohang-city is a greater source of pollutant loads than the Neang-Chun region with wide drainage area. Therefore, the quantity of TN inflowing into Yeong-il Bay is much more than T-P. The accumulation of pollutant load effluenced from on-land will happen at the inner coast region of Yeon-il Bay. Finally, We would make a prediction that the water quality will take a bad turn.

영일만 유입오염부하량의 계절 변동에 관한 연구 (Seasonal Variation of Pollutant load flowing into Yeong-Il bay)

  • 윤한삼;이인철;류청로;박종화
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 추계학술대회 논문집
    • /
    • pp.100-107
    • /
    • 2002
  • This study investigates the seasonal variation and spatial distribution characteristics of pollutant load, as executing the quantity valuation of pollutant load inflowing into Yeong-Il bay from on-land including the Hyeong-san river. Annual total pollutant generating rate from Yeong-Il bay region are 202ton to BOD, 620ton to SS, 42ton to T-N, 16ton to T-P respectively, if expressly point out, pollutant generating rate from the Hyeong-san river is the greatest, which BOD ratio is 78.2%, SS 88.5%, T-N 62.5%, T-P 73.1%. As calculating Tank model with input value of daily precipitation and evaporation of 2001 year in drainage basin of the Hyeong-san river, Estimated result of the annual total river discharge effluencing from this river is $830{\times}106m^3$. As result to estimating annual total effluence rate outflowing at the rivers from each drainage basins, annual total inflow pollutant rate are BOD 10,633ton, SS 19,302ton, T-N 15,369ton, T-P 305ton. The III basin which is population congestion region of the Pohang-city drain away a good many pollutant load than the V basin including the Neang-Chun with wide drainage area. Especially, a great many T-N than T-P inflow into Yeong-Il bay. The accumulation of pollutant load effluenced from on-land will happen on at the inner coast region of Yeong-Il bay, finally we would make a prediction that the water quality will take a bad turn.

  • PDF

저수형 잔디블록 저수조 내 충진재료에 따른 저수량 및 초종별 증발산량 (Volume of Water Storage and Evapotranspiration by Inserted Materials at a Reservoir of Porous Grass Block)

  • 한승호;최준수;양근모;양병이;강진형;김원태
    • 한국조경학회지
    • /
    • 제34권5호
    • /
    • pp.76-83
    • /
    • 2006
  • The purpose of this study was to investigate the performance of porous grass block. For the investigation, Festuca arundinacea and Zoysia japonica 'Zenith' were planted, and the volume of evapotranspiration and remains were examined based on different materials in the water tank in the experiment of Festuca arundinacea, the volume of water storage of treatment with perlite ($10.84{\iota}/m^2$) was higher than that with drainage ($7l/m^2$). The difference between the two was $3.84/m^2$. The drainage treatment without water storage capacity showed the higher degree of dryness in turf grass. The volume of evapo-transpiration of treatment with perlite was the highest (21.57mm/week). The volume of evapotranspiration of treatment with sand was 19.57mm/week, and with treatment with drainage was 18.24mm/week. Based on the measured volume of daily evapotranspiration of $2.60{\sim}3.08mm\;d^{-1}$, it was determined that the unit with water storage capacity would store water of one to two days usage compared to unite without such storage capacity. In the experiment of Zoysia japonica 'Zenith', the volume of water storage of treatment with perlite was $10.77l/m^2$ which was similar to the former experiment. The volume of evapotranspiration of treatment with perlite and sand were 21.64mm/week and 20.64mm/week, respectively. In case of airtight water tank, the volume was measured as 22.06mm/week. Each treatment has no notable difference in the volume of evapotranspiration. In conclusion, from the investigation in this study, porous grass block with water tank was found to be effective in plant growth under low irrigation. As the ecological area ratio and vegetated porous pavement have became more emphasized, additional study of rain infiltration and reservoir effect are needed in the future.