• Title/Summary/Keyword: drain pile

Search Result 30, Processing Time 0.021 seconds

A Case Study on the Application of Gravel Pile in Soft Ground (Gravel Pile에 의한 연약지반 개량 시험시공 사례연구)

  • 천병식;고용일;여유현;김백영;최현석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.223-230
    • /
    • 2000
  • Sand drain as a vertical drainage is widely used in soft ground improvement. Recently, sand, the principal source of sand drain, is running out. The in-situ tests were carried out to utilize gravel as a substitute for sand. In-situ tests area was divided into two areas by material used. One is Sand Drain(SD) and Sand Compaction Pile(SCP) area, the other is Gravel Drain(GD) and Gravel Compaction Pile(GCP) area. Both areas were monitored to obtain the information on settlement, pore water pressure and bearing capacity by measuring instruments for stage loading caused by embankment. The results of measurements were analyzed, The clogging effect was checked at various depth in gravel column after the test. According to the test results, the settlement was found to be smaller in gravel drain than in sand drain. The increase in bearing capacity by gravel pile explains the result. The clogging effect was not found in gravel column. It is assumed that gravel is relatively acceptable as a drainage material. Gravel is considered to be a better material than sand for bearing capacity, and it is found that bearing capacity is larger when gravel is used as a gravel compaction pile than as a gravel drain.

  • PDF

Utilization of Waste Concrete as Vertical Drain Material (연직배수재료로 폐콘크리트 활용에 관한 기초연구)

  • 이용수;정하익;김우성;권용완
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.571-576
    • /
    • 2001
  • This paper presents the utilization of waste concrete as vertical drain material. The materials used as vertical drain material were the waste concrete, obtained from the demolished apartments or concrete structure and sand. In this study, laboratory model test was performed to investigate settlement and bearing capacity between sand compaction pile and waste concrete compaction pile. The results of laboratory model test showed that the improvement efficiency of soft ground by waste concrete compaction pile was better than sand compaction pile.

  • PDF

A Case Study on Test Embankment using Vertical Drain Method at Incheon International Airport (인천국제공항 수직배수공법 시험시공 사례연구)

  • 권오현
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.06a
    • /
    • pp.33-44
    • /
    • 2001
  • The generally known vertical drain methods for improvement of soft ground are Sand Drain, Sand Compaction Pile, Plastic Drain Board, and Pack Drain. Recently, Plastic Drain Board method application in soft ground is widely used. In this case study, it is compared with each other vertical drain methods from the results of monitorning and test embankment. The results of the analysis and the study show that Plastic Drain Board method is relatively acceptable as vertical drain method.

  • PDF

A Study on the Bearing Capacity of Gravel Column in Soft Ground (연약지반에서의 쇄석골재 말뚝의 지지력 특성 연구)

  • 천병식;여유현
    • Proceedings of the KSR Conference
    • /
    • 1999.11a
    • /
    • pp.407-414
    • /
    • 1999
  • Sand drain as a vertical drainage is widely used in soft ground improvement. Recently, sand, the principal source of sand drain, is running out. A laboratory model test was carried out to utilize gravel as a substitute for sand. Though which the characteristics of gravel are compared to those of sand for engineering purpose. According to the test, the settlement was found to be smaller in gravel drain than in sand drain. The increase in bearing capacity by gravel rile explains the result. The clogging effect was not found in gravel column. As a result, it is assumed that gravel is relatively acceptable as a drainage material. Gravel material seems better than sand material in bearing capacity and it is found that bearing capacity is larger when gravel is used as compaction pile than as drain from in-situ test on bearing capacity. Increase of bearing capacity with gravel pile means an effect of composite ground by stiffness of gravel material. It can lie supposed to use gravel pile instead of sand pile in view of consolidation effect and bearing capacity.

  • PDF

A Case Study on the Application of Gravel Pile in Soft Ground (Gravel Pile의 현장적용을 위한 시험시공 사례연구)

  • 천병식;고용일;여유현;김백영;최현석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.02a
    • /
    • pp.32-41
    • /
    • 2000
  • Sand drain as a vertical drainage is widely used in soft ground improvement Recently, sand, the principal source of sand drain, is running out. The laboratory model tests were carried out to utilize gravel as a substitute for sand. Though which the characteristics of gravel are compared to those of sand for engineering purpose. Two cylindrical containers for the model test were filled with marine clayey soil from the west coast of Korea with a column in the center, one with sand, the other with gravel. Vibrating wire type piezometers were installed at the distance of 1.0D, 1.5D and 2.0D from the center of the column. The characteristics of consolidation were studied with data obtained from the measuring instrument place on the surface of the container. The parameter study was performed on the marine clayey soil before and after the test in order to verify the effectiveness of the improvement. The clogging effect was checked at various depth in gravel column after the test. In-situ tests area was divided into two areas by material used. One is Sand Drain(SD) and Sand Compaction Pile(SCP) area, the other is Gravel Drain(GD) and Gravel Compaction Pile(GCP) area. Both areas were monitored to obtain the information on settlement, pore water pressure and bearing capacity by measuring instruments for stage loading caused by embankment. The results of measurements were analyzed. According to the test results, the settlement was found to be smaller in gravel drain than in sand drain. The increase in bearing capacity by gravel pile explains the result. The clogging effect was not found in gravel column. It is assumed that gravel is relatively acceptable as a drainage material. Gravel is considered to be a better material than sand for bearing capacity, and it is found that bearing capacity is larger when gravel is used as a gravel compaction pile than as a gravel drain.

  • PDF

Development of Remediation and Stabilization Technique for Low-Permeable Contaminated Soil Using Waste Materials (폐기물을 활용한 저투수성 오염토양의 정화 및 안정화 기술 개발)

  • 박상규;이기호;박준범
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.681-688
    • /
    • 2002
  • Study was peformed to develop the‘environmental double pile’for the remediation of low-permeable contaminated soil. This technique is similar in function to‘sand drain pile’But this applies recyclable oyster shell treated as waste materials to a drain material and the pile is consisted of two layers. Inner metal pile is located in center and oyster shells are filled around it. By this technology, contaminated ground water is pumped out through the oyster shell and purified by drainage, adsorption, and reaction processes. Afterwards, the grout material is injected through the inner pile for the effect of the solidification / stabilization. As a result, the concept of this technique is a development of one-step process technology. Through the test, a consolidation characteristic by radial drain is going to be evaluated and the optimum standard of this technology will be calculated.

  • PDF

Analysis on Consolidation Behavior of Soft Ground with Reactive Drain Pile (반응성 배수파일이 타설된 지반의 압밀거동 분석)

  • Kim, Beomjun;Oh, Myounghak;Yune, Chanyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.1
    • /
    • pp.13-23
    • /
    • 2014
  • Geotechnical evaluation on the reactive drain pile which can achieve simultaneously both the soft ground improvement and the remediation of contaminated pore water in reclamation site was performed. Applicability of steel-making slag used as a inside reactive material was confirmed. To investigate the consolidation characteristics of the soft ground improved by reactive drain pile, testing devices to form and install the reactive drain pile were developed and laboratory tests were performed according to the existence of outside sand drain and the length of impermeable barrier. Test results showed that the consolidation time was decreased as the shortening of impermeable barrier. However, the effect of outside sand drain on consolidation time was dominant compared with the length of impermeable barrier.

Numerical Analysis on the Behavior of Clayey Foundation Reinforced with Steel Sheet Pile (강널말뚝으로 보강된 점토지반거동의 수치해석)

  • 양극영;이대재;정진섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.1
    • /
    • pp.142-154
    • /
    • 2002
  • This study was performed to investigate constraint effects of deformation (heaving, lateral displacement) of clayey foundation reinforced with sheet pile at the tip of banking on soft ground, under intact state (natural) and the state of vertical drain respectively. The following results are obtained. 1. In view of reduction in heaving or lateral displacement, sheet pile is not supposed to be of use. 2. Sheet pile is effective only when vertical drain is installed for acceleration of consolidation and gradual loading is applied.

Numerical Analysis on Deformation of Soft Clays Reinforced with Rigid Materials (말합연약식반의 변형위석에 관한 수치해석)

  • Gang, Byeong-Seon;Park, Byeong-Gi;Jeong, Jin-Seop
    • Geotechnical Engineering
    • /
    • v.1 no.2
    • /
    • pp.27-40
    • /
    • 1985
  • This study aims at the development of computer Program for the deformation analysis of soft clay layers, and using this computer program, study the constraint effect of deformation- heaving, lateral displacement-of the soft clay layers reinforced with sheet pile at the tip of banking or improvement of soft clay layer up to hard strata, under intact state (natural) and the state of vertical drain respectively. For this study, Biot's consolidation theories and modified Cam-clay theory for constitutive equation for FEMI were selected and coupled governing equation, and christian-Boehmer's technique was applied to solve the coupled relationship. The following results are obtained. 1. Sheet pile or improvement of soft clay layer to the hard strata work well against the settlement of neighboring ground. B. In view of restriction of heaving or lateral displacement, sheet pile is not supposed to be of use. 3. Sheet pile is of effect only when vertical drain is constructed for acceleration of consolidation and load increases gradually. B. The larger the rigidity of improvement of layer to hard strata is, the less settlement occurs.

  • PDF

An Experimental Study on the Effects of Bottom Ash Compaction Pile in the Sea Clay Layer (해성 점토지반의 저회다짐말뚝 보강 효과에 관한 실험적 연구)

  • Park, Se-Hyun;Han, Yun-Su;Do, Jong-Nam;Chun, Byung-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.595-598
    • /
    • 2010
  • Many economical and efficient methods such as sand drain method(SD), plastic board drain(PBD), sand compaction pile, vacuum consolidation method, etc., have been used for soft grounds. The case of sand compaction pile has an effect on accelerating consolidation and increasing bearing capacity by penetration at regular intervals under soft grounds for reducing the drainage path. But, this method has caused not only the nature damage by extracting the sands indiscreetly but also the economical problem for importing the sands because it needs so much sand to make the sand compaction pile. Thus, this study choosed the bottom ash which has similar engineering characteristics with sand. It was performed that clogging test and large direct shear test changing the bottom ash replacement ratio in soft ground for studying strength characteristics of soft ground using bottom ash compaction pile. As a result of the test, the internal friction angle was largely increased and the cohesion was decreased as the replacement ratio increased.

  • PDF