• Title/Summary/Keyword: drag and lift

Search Result 641, Processing Time 0.023 seconds

Aerodynamic Performance Improvement by Divergent Trailing Edge Modification to a Supercritical Airfoil

  • Yoo, Neung-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.10
    • /
    • pp.1434-1441
    • /
    • 2001
  • A computational study has been performed to determine the effects of divergent trailing edge (DTE) modification to a supercritical airfoil in transonic flow field. For this, the computational result with the original DLBA 186 supercritical airfoil was compared to that of the modified DLBA 283. A wavier-Stokes code, Fluent 5. 1, was used with Spalart-Allmaras's one-equation turbulence model. Results in this study showed that the reduction in drag due to the DTE modification is associated with weakened shock and delayed shock appearance. The decrease in drag due to the DTE modification is greater than the increase in base drag. The effect of the recirculating flow region on lift increase was also observed. An airfoil with DTE modification achieved the same lift coefficient at a lower angle of attack while giving a lower drag coefficient. Thus, the lift-to-drag ratio increases in transonic flow conditions compared to the original airfoil. The lift coefficient increases considerably whereas the lift slope increases just a little due to DTE modification.

  • PDF

Minimization of wind load on setback tall building using multiobjective optimization procedure

  • Bairagi, Amlan Kumar;Dalui, Sujit Kumar
    • Wind and Structures
    • /
    • v.35 no.3
    • /
    • pp.157-175
    • /
    • 2022
  • This paper highlights the minimization of drag and lift coefficient of different types both side setback tall buildings by the multi-objective optimization technique. The present study employed 48 number both-side setback models for simulation purposes. This study adopted three variables to find the two objective functions. Setback height and setback distances from the top of building models are considered variables. The setback distances are considered between 10-40% and setback heights are within 6-72% from the top of the models. Another variable is wind angles, which are considered from 0° to 90° at 15° intervals according to the symmetry of the building models. Drag and lift coefficients according to the different wind angles are employed as the objective functions. Therefore 336 number population data are used for each objective function. Optimum models are compared with computational simulation and found good agreements of drag and lift coefficient. The design wind angle variation of the optimum models is considered for drag and lift study on the main square model. The drag and lift data of the square model are compared with the optimum models and found the optimized models are minimizing the 45-65% drag and 25-60% lift compared to the initial square model.

Analysis of conventional drag and lift models for multiphase CFD modeling of blood flow

  • Yilmaz, Fuat;Gundogdu, Mehmet Yasar
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.3
    • /
    • pp.161-173
    • /
    • 2009
  • This study analyzes especially drag and lift models recently developed for fluid-solid, fluid-fluid or liquid-liquid two-phase flows to understand their applicability on the computational fluid dynamics, CFD modeling of pulsatile blood flow. Virtual mass effect and the effect of red blood cells, RBCs aggregation on CFD modeling of blood flow are also shortly reviewed to recognize future tendencies in this field. Recent studies on two-phase flows are found as very useful to develop more powerful drag-lift models that reflect the effects of blood cell's shape, deformation, concentration, and aggregation.

Fluctuating lift and drag acting on a 5:1 rectangular cylinder in various turbulent flows

  • Yang, Yang;Li, Mingshui;Yang, Xiongwei
    • Wind and Structures
    • /
    • v.34 no.1
    • /
    • pp.137-149
    • /
    • 2022
  • In this paper, the fluctuating lift and drag forces on 5:1 rectangular cylinders with two different geometric scales in three turbulent flow-fields are investigated. The study is particularly focused on understanding the influence of the ratio of turbulence integral length scale to structure characteristic dimension (the length scale ratio). The results show that both fluctuating lift and drag forces are influenced by the length scale ratio. For the model with the larger length scale ratio, the corresponding fluctuating force coefficient is larger, while the spanwise correlation is weaker. However, the degree of influence of the length scale ratio on the two fluctuating forces are different. Compared to the fluctuating drag, the fluctuating lift is more sensitive to the variation of the length scale ratio. It is also found through spectral analysis that for the fluctuating lift, the change of length scale ratio mainly leads to the variation in the low frequency part of the loading, while the fluctuating drag generally follows the quasi-steady theory in the low frequency, and the slope of the drag spectrum at high frequencies changes with the length scale ratio. Then based on the experimental data, two empirical formulas considering the influence of length scale ratio are proposed for determining the lift and drag aerodynamic admittances of a 5:1 rectangular cylinder. Furthermore, a simple relationship is established to correlate the turbulence parameter with the fluctuating force coefficient, which could be used to predict the fluctuating force on a 5:1 rectangular cylinder under different parameter conditions.

A study on the Aerodynamic Characteristics of a Multi-Functional Spoiler (다기능 spoiler의 공력특성에 관한 연구)

  • Lee, B.J.;Sheen, D.J.;Kim, W.J.
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.8 no.1
    • /
    • pp.67-81
    • /
    • 2000
  • An experimental study was performed on the time lag, lift and drag characteristics of a multi functional spoiler which is a device to increase lift and drag contrary to conventional spoiler which decrease lift and increase drag. In this study, a wind tunnel investigation was made of the effect of incidence angle, slot width, and chordwise location of multi functional spoiler on the time lag, lift and drag characteristics of a wing. The results indicate that the time lag of a multi functional spoiler is influenced mainly not only by the chordwise location of a spoiler but also by the slot width between spoiler and wing upper surface. Multi functional spoiler can reduce time lag effectively by slotting the trailing edge of spoiler with slot ratio (slot width devided by the wing chord length) between 0.05 and 0.1. Also, it shows that the lift and drag coefficients of the wing with the multi functional spoiler and trailing edge flap are increased by 20% and 80%, respectively, compared to the wing with trailing edge flap only.

  • PDF

Drag and Lift Forces of a Circular Cylinder Located Parallel to a Planar Jet (평면 제트내의 평행하게 놓인 원형 실린더가 받는 항력과 양력)

  • Gang, Sin-Hyeong;Hong, Sun-Sam
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.1
    • /
    • pp.369-376
    • /
    • 1996
  • Variations of the drag and lift forces of a circular cylinder in a planar turbulent jet were experimentally investigated. The force was directly measured using the load cell and estimated by integrating the pressure distribution on the cylinder. As the cylinder moves outward from the center of the jet, the direction of lift force changes and the drag force decreases. Reynolds number, the ratio of cylinder's diameter to half width of jet had effect on maximum drag coefficient and the location where the direction of lift changes.

Application of Vortex Generators on Smart Un-manned Aerial Vehicle(SUAV) (스마트 무인기에 부착한 Vortex Generator 효과)

  • Chung, Jin-Deog;Choi, Sung-Wook;Cho, Tae-Whan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.8
    • /
    • pp.688-693
    • /
    • 2007
  • To improve aerodynamic efficiency of the Smart Un-manned Aerial Vehicle(SUAV), vortex generator was applied along the wing upper surface during SUAV tests. Vortex generator, initially used in TR-S2 configuration to enhance lift characteristic, increased lift coefficient. Meanwhile vortex generator produced excessive drag and eventually reduced lift-to-drag ratio. To examine the effect of vortex generator's height, three different heights of vortex generator were used for various SUAV configuration. Vortex generator of 3mm height used in TR-S4 configuration produced 3.1% increase in maximum lift coefficient and 1.5% reduction in lift-to-drag ratio.

Flow over a Circular Cylinder in Three-Dimensional Transitional Regimes (삼차원 천이영역에서 원형 실린더 주위의 유동)

  • Kim, Jin-Sung;Choi, Hae-Cheon
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.956-961
    • /
    • 2003
  • Direct numerical simulations of flow over a circular cylinder are performed at two different Reynolds numbers (Re=220 and 300) that correspond to three-dimensional instabilities of mode A and mode B, respectively, to investigate the characteristics of drag and lift at these Reynolds numbers. The drag and lift coefficients are measured locally along the spanwise direction and their characteristics are studied in detail. The variation of total drag in time is large at Re=220, and the total drag becomes minimum when vortex dislocation occurs in the wake. The drag and lift variations in space are also closely associated with the evolution of vortex dislocation at this Reynolds number. At Re=300, vortex dislocation is not found in the wake and temporal variations of drag and lift are much smaller than those at Re=220, but their spatial variations are quite large due to the near-wake secondary vortices existing in the mode B instability.

  • PDF

THE ANALYSIS OF AERODYNAMIC CHARACTERISTICS FOR BUSEMANN BIPLANE WITH FLAP (초음속 조건의 플랩을 장착한 Busemann Biplane의 플랩 길이와 각도 변화에 따른 양항비 성능 비교)

  • Tai, Myungsik;Son, Chankyu;Oh, Sejong
    • Journal of computational fluids engineering
    • /
    • v.18 no.3
    • /
    • pp.42-50
    • /
    • 2013
  • The supersonic airplane with flapped biplane, Busemann biplane equipped flap, is superior to drag and noise reduction due to wave cancelation effect between upper and lower airfoils. In this study, it is numerically calculated and analyzed the lift, drag and lift to drag ratio of flapped biplane with respect to various the length and angle of the flap. Euler solver of EDISON CFD, web based computational fluid dynamic solver for the purpose of education, is employed. Depending on the length of the flap, lift and drag increase linearly, and there exists the optimum flap angle which maximize the lift-to-drag ratio at the freestream mach 2.0 on-design condition. The predictable relational expression is driven as liner equation. As a results of comparison with drag of flapped biplane, Busemann biplane, and diamond airfoil with the same lift, the drag of flapped biplane is 88.76% lower than that of the Busemann biplane and 70.67% lower than that of the diamond airfoil. In addition, the change of pressure is compared to confirm the noise reduction effect of flapped biplane at h/c=5 of lower airfoil. The shock strength of flapped biplane is smaller than that of other airfoils.

A Computational Fluid Dynamic Study on the Sculling Motion for Water Safety (수상안전을 위한 Sculling 동작의 전산유체역학적 연구)

  • Lee, Hyo-Taek;Kim, Yong-Jae
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.24 no.1
    • /
    • pp.18-24
    • /
    • 2012
  • This study analyses the effects of various angles in sculling on human body lift and drag by means of computational fluid dynamics, discusses the importance of sculling and provides a basis for the development of future water safety education programmes. Study subjects were based on the mean data collected from males in the age of 20s from a survey on the anthropometric dimensions of the Koreans. Moreover, lift, drag as well as coefficient values, all of which were governed by the angle of the palm, were calculated using 3-dimentional modelling produced by computational fluid dynamics programmes i.e. CFD. Interpretations were performed via general k-${\varepsilon}$ turbulence modelling in order to determine lift, drag and coefficient values. Turbulence intensity was set to one per cent as per the figures from preceding research papers and 3-dimentional simulations were performed for a total of five different angles $0^{\circ}$, $15^{\circ}$, $30^{\circ}$, $45^{\circ}$ and $60^{\circ}$. The drag and lift values for the differing angles of the hands during sculling movement are as follows. The lift and drag values gradually increased with the increasing angle of the palm, however, the magnitude of increase for drag started to predominate lift from $45^{\circ}$ and lift gradually decreased from $60^{\circ}$. Overall, it is concluded that the optimal efficiency of sculling can be achieved at the angles $15^{\circ}$ and $30^{\circ}$, and it is anticipated that greater safety and informative education can be ensured for Life saving trainees if the results were to be applied to practical settings. However, as the study was conducted using simulation programmes which performed analyses on the collected anthropometric dimension, the obtained results cannot be made universal, which warrants furthers studies involving varied study subjects with actual measurements taken in water.