• Title/Summary/Keyword: draft genome

Search Result 108, Processing Time 0.029 seconds

Draft Genome of Toxocara canis, a Pathogen Responsible for Visceral Larva Migrans

  • Kong, Jinhwa;Won, Jungim;Yoon, Jeehee;Lee, UnJoo;Kim, Jong-Il;Huh, Sun
    • Parasites, Hosts and Diseases
    • /
    • v.54 no.6
    • /
    • pp.751-758
    • /
    • 2016
  • This study aimed at constructing a draft genome of the adult female worm Toxocara canis using next-generation sequencing (NGS) and de novo assembly, as well as to find new genes after annotation using functional genomics tools. Using an NGS machine, we produced DNA read data of T. canis. The de novo assembly of the read data was performed using SOAPdenovo. RNA read data were assembled using Trinity. Structural annotation, homology search, functional annotation, classification of protein domains, and KEGG pathway analysis were carried out. Besides them, recently developed tools such as MAKER, PASA, Evidence Modeler, and Blast2GO were used. The scaffold DNA was obtained, the N50 was 108,950 bp, and the overall length was 341,776,187 bp. The N50 of the transcriptome was 940 bp, and its length was 53,046,952 bp. The GC content of the entire genome was 39.3%. The total number of genes was 20,178, and the total number of protein sequences was 22,358. Of the 22,358 protein sequences, 4,992 were newly observed in T. canis. Following proteins previously unknown were found: E3 ubiquitin-protein ligase cbl-b and antigen T-cell receptor, zeta chain for T-cell and B-cell regulation; endoprotease bli-4 for cuticle metabolism; mucin 12Ea and polymorphic mucin variant C6/1/40r2.1 for mucin production; tropomodulin-family protein and ryanodine receptor calcium release channels for muscle movement. We were able to find new hypothetical polypeptides sequences unique to T. canis, and the findings of this study are capable of serving as a basis for extending our biological understanding of T. canis.

Genome sequence of Caballeronia sordidicola strain PAMC 26510 isolated from Psoroma sp., an Antarctic lichen (남극 지의류에서 분리한 Caballeronia sordidicola균주 PAMC 26510의 유전체 서열 분석)

  • Yang, Jhung Ahn;Hong, Soon Gyu;Oh, Hyun-Myung
    • Korean Journal of Microbiology
    • /
    • v.53 no.2
    • /
    • pp.137-140
    • /
    • 2017
  • Caballeronia sordidicola strain PAMC 26510 was isolated from Psoroma sp., a lichen material, collected from Barton Peninsula of King George Island in Antarctica. The draft genome sequence of PAMC 26510 consisted of 224 contigs and they was 7,872,143 base pairs with 59.7% G+C content. The genome included 7,580 protein coding sequences and 6 ribosomal RNA genes and 46 tRNA genes. The strain PAMC 26510 is also a metabolic generalist as we have observed in previous genomic studies in the arctic strain of Caballeronia sordidicola. The draft genomic sequences of PAMC 26510 had six CRISPR arrays on six contigs, and there were two clusters of CRISPR-associated genes that were linked with respective CRISPR arrays.

Current status and prospects of kiwifruit (Actinidia chinensis) genomics (참다래 유전체 연구 동향)

  • Kim, Seong-Cheol;Kim, Ho Bang;Joa, Jae-Ho;Song, Kwan Jeong
    • Journal of Plant Biotechnology
    • /
    • v.42 no.4
    • /
    • pp.342-349
    • /
    • 2015
  • Kiwifruit is a new fruit crop that was commercialized in the late 1970s. Recently, its cultivation and consumption have increased rapidly worldwide. Kiwifruit is a dioecious, deciduous, and climbing plant having fruit with hairs and various flesh colors and a variation in ploidy level; however, the industry consists of very simple cultivars or genotypes. The need for efficient cultivar improvement together with the evolutional and biological perspectives based on unique plant characteristics, have recently encouraged genome analysis and bioinformatics application. The draft genome sequence and chloroplast genome sequence of kiwifruit were released in 2013 and 2015, respectively; and gene annotation has been in progress. Recently, transcriptome analysis has shifted from previous ESTs analysis to the RNA-seq platform for intensive exploration of controlled genetic expression and gene discovery involved in fruit ascorbic acid biosynthesis, flesh coloration, maturation, and vine bacterial canker tolerance. For improving conventional breeding efficiency, molecular marker development and genetic linkage map construction have advanced from basic approaches using RFLP, RAPD, and AFLP to the development of NGS-based SSR and SNP markers linked to agronomically important traits and the construction of highly saturated linkage maps. However, genome and transcriptome studies have been limited in Korea. In the near future, kiwifruit genome and transcriptome studies are expected to translate to the practical application of molecular breeding.

Genome sequence of carotenoid producing Sphingobacteriaceae bacterium SH-48 isolated from freshwater in Korea (카로티노이드 생산 Sphingobacteriaceae SH-48 균주의 유전체 염기서열 분석)

  • Choi, Ahyoung;Chung, Eu Jin;Nam, Young Ho;Choi, Gang-Guk
    • Korean Journal of Microbiology
    • /
    • v.53 no.4
    • /
    • pp.347-350
    • /
    • 2017
  • We sequenced the genome of the Sphingobacteriaceae bacterium SH-48 isolated from the Sohan stream in Republic of Korea by using a dilution-to-extinction culturing method. The sequences were assembled into a draft genome containing 5,650,162 bp with a G + C content of 35.4% and 4,856 protein-coding genes in 2 contigs. This strain contains the carotenoid biosynthesis genes crtY, crtZ, crtD, crtI, crtB, and crtH as gene clusters. This genomic information provides new insights into the carotenoid biosynthesis pathway.

Draft Genome Sequence of Xylaria grammica EL000614, a Strain Producing Grammicin, a Potent Nematicidal Compound

  • Park, Sook-Young;Jeon, Jongbum;Kim, Jung A;Jeon, Mi Jin;Yu, Nan Hee;Kim, Seulbi;Park, Ae Ran;Kim, Jin-Cheol;Lee, Yerim;Kim, Youngmin;Choi, Eu Ddeum;Jeong, Min-Hye;Lee, Yong-Hwan;Kim, Soonok
    • Mycobiology
    • /
    • v.49 no.3
    • /
    • pp.294-296
    • /
    • 2021
  • An endolichenic fungus, Xylaria grammica strain EL000614, showed strong nematicidal effects against plant pathogenic nematode, Meloidogyne incognita by producing grammicin. We report genome assembly of X. grammica EL000614 comprised of 25 scaffolds with a total length of 54.73 Mb, N50 of 4.60 Mb, and 99.8% of BUSCO completeness. GC contents of this genome were 44.02%. Gene families associated with biosynthesis of secondary metabolites or regulatory proteins were identified out of 13,730 gene models predicted.

Genome Wide Analysis of the Potato Soft Rot Pathogen Pectobacterium carotovorum Strain ICMP 5702 to Predict Novel Insights into Its Genetic Features

  • Mallick, Tista;Mishra, Rukmini;Mohanty, Sasmita;Joshi, Raj Kumar
    • The Plant Pathology Journal
    • /
    • v.38 no.2
    • /
    • pp.102-114
    • /
    • 2022
  • Pectobacterium carotovorum subsp. carotovorum (Pcc) is a gram-negative, broad host range bacterial pathogen which causes soft rot disease in potatoes as well as other vegetables worldwide. While Pectobacterium infection relies on the production of major cell wall degrading enzymes, other virulence factors and the mechanism of genetic adaptation of this pathogen is not yet clear. In the present study, we have performed an in-depth genome-wide characterization of Pcc strain ICMP5702 isolated from potato and compared it with other pathogenic bacteria from the Pectobacterium genus to identify key virulent determinants. The draft genome of Pcc ICMP5702 contains 4,774,457 bp with a G + C content of 51.90% and 4,520 open reading frames. Genome annotation revealed prominent genes encoding key virulence factors such as plant cell wall degrading enzymes, flagella-based motility, phage proteins, cell membrane structures, and secretion systems. Whereas, a majority of determinants were conserved among the Pectobacterium strains, few notable genes encoding AvrE-family type III secretion system effectors, pectate lyase and metalloprotease in addition to the CRISPR-Cas based adaptive immune system were uniquely represented. Overall, the information generated through this study will contribute to decipher the mechanism of infection and adaptive immunity in Pcc.

Cloning and expression of new laccase gene (soncotA) from Bacillus sonorensis KCTC13918 in E. coli (Bacillus sonorensis KCTC13918로부터 새로운 laccase유전자 (soncotA)의 클로닝과 대장균에서의 발현)

  • Choi, Shin-Geon;Yoon, Hyeonjong
    • Journal of Industrial Technology
    • /
    • v.37 no.1
    • /
    • pp.16-20
    • /
    • 2017
  • A new putative laccase gene (soncotA) which show 78% homology with that from Bacillus licheniformis (liccotA) was isolated from draft genome sequence of Bacillus sonorensis KCTC 13918. A 1,545 bp of PCR product corresponding 514 amino acids was cloned into NdeI-NotI site of pET21c and expressed as soluble form in E. coli. About 59 kDa size of recombinant laccase was purified into homogenity by Ni-NTA column and laccase activity was confirmed by zymography. The enzymatic properties of recombinant laccase were characterized. The specific activity of B. sonorensis laccase was 0.033 fold lower than that of Bacillus licheniformis laccase. The finding of new laccase gene broadened the enzymatic diversity of Bacillus species laccases.

Genome sequence of Prevotella intermedia strain originally isolated from cervicofacial actinomycosis (경부안면형 방선균증에서 분리된 Prevotella intermedia의 유전체 염기서열 해독)

  • Moon, Ji-Hoi;Jang, Eun-Young;Yang, Seok Bin;Shin, Seung-Yun;Ryu, Jae-In;Lee, Jin-Yong;Lee, Jae-Hyung
    • Korean Journal of Microbiology
    • /
    • v.55 no.1
    • /
    • pp.58-60
    • /
    • 2019
  • Anaerobic Gram-negative bacterium Prevotella intermedia is a part of normal flora of the oral cavity and associated with various types of oral and systemic diseases. We present here a draft genome sequence of P. intermedia ATCC 15032, originally isolated from cervicofacial actinomycosis. The genome is 2,848,426 bp in length and has a GC content of 43.45%. The genome includes 2,358 protein-coding genes, 5 rRNAs, and 43 tRNA. The sequence information will provide important clues in understanding the genome diversity within the bacterial species, and genetic basis for phenotypic differences among P. intermedia strains.

Genome sequence of Bifidobacterium dentium strain ATCC 15424 originally isolated from pleural fluid of an empyema patient (농흉 환자의 흉막액에서 분리된 Bifidobacterium dentium strain ATCC 15424의 유전체 염기서열 해독)

  • Moon, Ji-Hoi;Kim, Suegene;Yang, Seok Bin;Jang, Eun-Young;Shin, Seung-Yun;Lee, Jin-Yong;Lee, Jae-Hyung
    • Korean Journal of Microbiology
    • /
    • v.55 no.3
    • /
    • pp.280-282
    • /
    • 2019
  • We present here a draft genome sequence of Bifidobacterium dentium strain ATCC 15424, originally isolated from pleural fluid of an empyema patient. The genome is 2,625,535 bp in length and has a GC content of 58.5%. The genome includes 2,154 protein-coding genes, 4 rRNAs, and 55 tRNAs. Unlike other B. dentium strains isolated from human dental caries, ATCC 15424 carries 247 strain-specific genes, including prophage remnants and type III/IV secretion system proteins, N-acetylmuramoyl-L-alanine amidase, and PRTRC system protein E. The sequence information will contribute to understanding of the natural variation of B. dentium as well as the genome diversity within the bacterial species.