• Title/Summary/Keyword: dq modeling

Search Result 27, Processing Time 0.023 seconds

Circuit DQ Modeling and Analysis of Operating Characteristics for Hybrid Cascade Five-level PWM Rectifier (하이브리드 Cascade 5-레벨 PWM 정류기의 회로 DQ모델링 및 동작특성 해석)

  • 최남섭
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.4
    • /
    • pp.817-824
    • /
    • 2000
  • This paper presents circuit DQ modeling and analysis of operating characteristics of hybrid cascade multilevel PWM rectifier, especially five-level, without isolation transformers. The circuit DQ transformation changes the original three-phase time varying circuit to stationary equivalent one by employing the synchronously rotating transformation matrix. As a result of circuit DQ modeling, the operating characteristics and some useful design relationships for the system are obtained with ease. That is, the analytic equations for DC voltages and active/reactive power supplied by source with respect to control variables are Presented. Moreover, the DC voltages for the multilevel output generation may be directly built up from AC utility source and the important control equation ensuring 5-level output voltage is obtained. Finally, to confirm the validity of the analysis, MATLAB simulations are carried out and the simulation results show good agreements between analytic predictions and the simulated waveforms.

  • PDF

Modeling and Characteristic Analysis of UPFC Using Circuit DQ Transform (회로 DQ 변환을 이용한 UPFC의 모델링 및 동작특성 해석)

  • Choi, Nam-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1027-1029
    • /
    • 2002
  • UPFC(Unified Power Flow Controller)는 계통의 선로로 전송되는 무효전력과 유효전력을 독립적으로 보상해줄 수 있는 유연송전시스템 기기로, 전력계통 전압 안정화와 위상제어 둥의 목적으로 실용성과 적용성이 뛰어나므로 최근 들어 국내외에서 활발하게 연구 되고 있다. 본 논문에서는 회로 DQ 변환 기법을 적용하여 UPFC를 모델링하고 동작특성 해석한다. 회로 DQ 변환의 결과 정특성 및 동특성을 나타낸는 등가회로를 구할 수 있으며 이로부터 각종 특성식과 설계식을 도출해 낸다. 또한, 제안된 모델링 및 동작특성 해석의 결과의 타당성은 PSIM 시뮬레이션을 통하여 검증한다.

  • PDF

A Study on AC Machine Modeling using Complex Vector and dq Transformation (복소 벡터와 dq 변환을 이용한 교류기 모델링에 관한 연구)

  • Hong, Sun-Ki;Park, Jin-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.11
    • /
    • pp.1601-1605
    • /
    • 2012
  • Three-phase voltage and current is applied to the three-phase alternating current motors which are commonly used in industry. Three phase variables of a, b, c are converted into d, q, 0 axis and the AC machines are modeled and analyzed. Basically the coordinate transformation or d-q transformation is used for convenience, a few steps are needed to analyze the motor performances - separating d and q components, establishing each equivalent circuit, and solving the differential equations of the circuits. In this study, a modeling technique of induction motor using complex vector is proposed and it can explain the induction motor physically. This method does not need the separating process of d and q components. With this technique, the model becomes simple, is easy to understand in physical, and can get the same results with those from the other models. These simulation results of the proposed model are compared with them for the conformation of the proposed method.

Characteristic Analysis of Three Phase PWM Boost AC-AC Converter Using Circuit DQ Transformation (회로 DQ 변환을 이용한 3상 PWM Boost AC-AC 컨버터의 특성해석)

  • 최남섭
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.7
    • /
    • pp.1514-1519
    • /
    • 2003
  • This paper presents modeling and analysis of static and dynamic characteristics in three phase PWM Boost AC-AC converter used for input voltage sag compensation of custom power. Especially, using circuit DQ transformation technique, an equivalent circuit in fundamental frequency domain is obtained which has all the system characteristics. Moreover, voltage gain and input power factor is analytically induced and linearized state equation at the specific operating point is given. Finally, PSIM simulation results show the validity of the Nosed modelling and analyses.

DQ Synchronous Reference Frame Model of a Series-Parallel Tuned Inductive Power Transfer System (직렬-병렬 공진 무선전력전송 시스템의 동기 좌표계 모델)

  • Noh, Eun-Chong;Lee, Sang-Min;Lee, Seung-Hwan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.6
    • /
    • pp.477-483
    • /
    • 2020
  • This study proposes a DQ synchronous reference frame model of a series-parallel tuned inductive power transfer (SP-IPT) system. The wireless power transmission system experiences control difficulty because the transmitter-side controller cannot directly measure the receiver-side load voltages and currents. Therefore, a control-oriented circuit model that shows the dynamics of the IPT system is required to achieve a well-behaved controller. In this study, an equivalent circuit model of the SP-IPT system in a synchronously rotating reference frame is proposed using the single-phase DQ transformation technique. The proposed circuit model is helpful in modeling the dynamics of the voltages and currents of the transmitter- and receiver-side resonant tanks and loads. The proposed circuit model is evaluated using frequency- and time-domain simulation results.

Modeling of Static Var Compensator with Hybrid Cascade 5-level PWM Inverter Using Circuit DQ Transformation (회로 DQ 변환을 이용한 하이브리드 Cascade 5-레벨 PWM 인버터를 포함하는 무효전력보상기의 모델링)

  • 최남섭
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.3
    • /
    • pp.421-426
    • /
    • 2002
  • Hybrid cascade multilevel PWM inverter has advantages of hybrid structure which enhances the better utilization of power semiconductor switches, that is, both hi호 power-low frequency switch, GTO and low power-high frequency switch, IGBT can be used in the same circuit. In this paper, a static var compensator using hybrid cascade 5-level PWM inverter is presented for high voltage/high power applications. The proposed system is modelled by circuit DQ transformation, and thus an equivalent circuit is obtained which reveals the important characteristics of the system and lead to the related equations. Finally, circuit structure and characteristics is presented and the validity of the characteristics analysis is shown through PSIM simulation.

Characteristic Analysis and Control of Three Phase PWM Buck AC-AC Converter (3상 PWM Buck AC-AC 컨버터의 특성해석과 제어)

  • 최남섭
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.6
    • /
    • pp.1283-1290
    • /
    • 2003
  • Recently, PWM Buck AC-AC Converter is widely employed in various industrial applications such as voltage and power regulator, electronic transformer, phase shifter and so on. This paper presents static and dynamic modeling and complete characteristic analysis of a PWM Buck AC-AC converter. Firstly, the three phase converter system is modelled by using DQ transformation whereby we can obtain basic characteristic equations such as voltage gain and power factor as well as state equation and transfer function for control. Secondly, based on the analysis, the feedforward-feedback control technique is also proposed to obtain instantaneous duty level change whereby very fast dynamic response is achieved. Finally, the experimental results show the validity of the modeling, analysis and control.

Multivariable Optimal Control of a Direct AC/AC Converter under Rotating dq Frames

  • Wan, Yun;Liu, Steven;Jiang, Jianguo
    • Journal of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.419-428
    • /
    • 2013
  • The modular multilevel cascade converter (MMCC) is a new family of multilevel power converters with modular realization and a cascaded pattern for submodules. The MMCC family can be classified by basic configurations and submodule types. One member of this family, the Hexverter, is configured as Double-Delta Full-Bridge (DDFB). It is a novel multilevel AC/AC converter with direct power conversion and comparatively fewer required components. It is appropriate for connecting two three-phase systems with different frequencies and driving an AC motor directly from a utility grid. This paper presents the dq model of a Hexverter with both of its AC systems by state-space representation, which then simplifies the continuous time-varying model into a periodic discrete time-invariant one. Then a generalized multivariable optimal control strategy for regulating the Hexverter's independent currents is developed. The resulting control structure can be adapted to other MMCCs and is flexible enough to include other control criterion while guaranteeing the original controller performance. The modeling method and control design are verified by simulation results.

Modeling and Analysis of Cascade Multilevel PWM Rectifier Using Circuit DQ Transformation

  • Park, Nam-Sup
    • Journal of information and communication convergence engineering
    • /
    • v.1 no.3
    • /
    • pp.163-168
    • /
    • 2003
  • This paper presents a cascade multilevel PWM rectifier without the isolation transformers for energy build-up at each inverter modules. The features and advantages of the proposed PWM rectifier can be summarized as follows; I) It realizes the high power high voltage AC/DC power conversion, 2) It uses no transformer which is bulky and heavy, 3) It has hybrid structure so that switching devices can be effectively utilized, 4) It produces high quality AC current even in high power high voltage applications, 5) The input power factor remains unity by simple modulation index control. The multilevel rectifier is analyzed by using the circuit DQ transformation whereby the characteristics and control equations are obtained. Finally, it will be shown that the system simulation reveals the validity of analyses.

Operating Characteristics Analysis of PWM Boost AC-AC Converter for Compensation of Voltage Sag (전압 Sag 보상을 위한 PWM Boost AC-AC 컨버터의 동작 특성 해석)

  • 최남섭
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.315-319
    • /
    • 2003
  • This paper presents modeling and analysis of static and dynamic characteristics in PWM Boost AC-AC converter used for input voltage sag compensation of custom power. Especially, using circuit DQ transformation technique, an equivalent circuit in fundamental frequency domain is obtained which has all the system characteristics. Moreover, voltage gain and input power factor is analytically induced and linearized state equation at the specific operating point is given. Finally, simulation results show the validity of the proposed modelling and analyses.

  • PDF