고장 예지 및 건전성 관리 기술(Prognostics and Health Management; PHM)은 시스템의 현재 상태를 진단하고 향후 발생 가능한 고장 시점을 신뢰성 있게 예지하는 기술로써 유지 보수 비용의 절감 및 시스템의 안정성 향상을 꾀하고자 하는 다양한 산업분야에서 활발하게 이용되고 있다. 스마트 그리드의 에너지 저장장치, 전기차, 스마트폰, 항공우주산업 등 광범위한 사용처에서 중요한 에너지원으로 사용되고 있는 배터리 또한 성능 저하 및 폭발의 위험성으로부터 자유로울 수 없기 때문에 이러한 고장 예지 및 건전성 관리 기술이 반드시 적용되어야 할 어플리케이션이다. 본 논문에서는 PHM의 기본적인 개념을 소개함과 동시에 배터리의 잔존 유효 수명(Remaining Useful Life; RUL)을 예측하는 각종 알고리즘 및 성능 평가 지표 서술에 초점을 맞추도록 한다. 더불어 배터리의 기능적 동작 원리 및 전기화학 기반의 모델링에 대한 설명을 통해 향후 잠재적인 가능성을 지닌 배터리의 전반적인 특성에 대한 깊은 이해 및 응용 기술에 대한 통찰력을 제시하고자 한다.
풍력은 전 세계적으로 가장 각광을 받고 있는 신재생 에너지이며 당분간 이러한 추세는 계속될 것으로 기대되고 있다. 최근 풍력발전시스템의 O&M(Operation & Maintenance) 비용의 절감에 대한 필요성이 꾸준히 대두되고 있는 실정이다. O&M 비용의 절감을 위한 가장 효율적인 방법은 CMS(Condition Monitoring System)의 도입이며 이는 풍력발전기 부품들의 악화, 적절한 선제적 유지보수, 발전중지시간의 단축 및 궁극적으로 풍력발전기의 운전 효율을 증대시키는 것을 가능케 한다. 풍력발전기의 터빈 로터와 관련하여 질량 불평형 및 공력비대칭과 같은 고장이 발생될 수 있다. 일반적으로 이러한 고장은 다양한 형태의 진동을 야기 시킨다. 이에 본 연구에서는 진동신호에 대한 스펙트럼과 간단한 max-min 진단 로직으로 구성된 고장검출 알고리즘을 제안한다. 또한 제안된 진단기법의 유용성의 확인을 위해 GH-Bladed 프로그램을 이용한 다양한 시뮬레이션 고찰을 수행한다.
In recent years, the diminishing of operation and maintenance cost using advanced maintenance technology is attracting many companies' attention. Especially, the heavy machinery industry regards it as a crucial problem since a failure of heavy machinery requires high cost and long downtime. To improve the current maintenance process, the heavy machinery industry tries to develop a methodology to predict failure in advance and to find its causes using usage data. A better analysis of failure causes requires more data so that various kinds of sensor are attached to machines and abundant amount of product usage data is collected through the sensor network. However, the systemic analysis of the collected product usage data is still in its infant stage. Many previous works have focused on failure occurrence as statistical data for reliability analysis. There have been less works to apply product usage data into root cause analysis of product failure. The product usage data collected while failures occur should be considered failure cause analysis. To do this, this study proposes a methodology to apply product usage data into failure cause analysis. The proposed methodology in this study is composed of several steps to transform product usage into failure causes. Various statistical analysis combined with product usage data such as multinomial logistic regression, T-test, and so on are used for the root cause analysis. The proposed methodology is applied to field data coming from operated locomotive and the analysis result shows its effectiveness.
최근 국내 건설산업은 성장의 시기를 지나 침체기로 접어들고 있으며 경쟁력 향상을 위해 건설사업관리 특히 공정관리의 중요성이 더욱 부각되고 있다. 이러한 상황에 토목 건설업계는 생존을 위한 다양한 공사관리 방안의 연구 및 현장 적용에 부단한 노력을 하고 있으며 많은 성과를 이루고 있으나 아직도 체계적이며 효율적이고 현장 활용도가 높은 공정관리 기법의 정착은 이루어지지 못하고 있다. 이에 본 연구에서는 공사관리의 핵심인 공정관리의 활용에 대해 설문조사방식으로 현장기술자들의 인식 및 이해의 정도를 파악하며 현장에서 실제 사용하고 있는 공정표의 작성수준과 활용 현황을 파악을 위해 방문 조사하여 현재 국내 공정관리 현주소 및 문제점을 파악하였다. 아울러, 기존문헌 및 연구논문의 고찰, 현장에의 적용성을 바탕으로 현장 활용성이 높은 WBS 분류에서부터 work pacckage 도출과 Activty도출, 공정표 작성 및 관리방안을 제안하였다.
터빈, 배관 및 저장탱크와 같은 물리장치들의 경우 노후화뿐만 아니라 제어장치에 대한 사이버공격으로 인해 PLC(Programmable Logic Controller)와 같은 제어시스템의 보호 및 상태감시기능이 동작하지 않는 경우, 피해파급력이 크고, 가동 중지 시 그 비용 손실 또한 매우 크다. 가동 중인 물리장치의 작동을 중지하지 않고 간접적으로 상태감시를 함으로써 가용성을 유지하기 위한 방안으로써 온도, 가속도, 전류 등을 간접적으로 감지하고, 데이터들을 Influx DB에 저장하여 실시간으로 감시하는 시스템을 설계 및 구현한다. 실제 구현된 시스템으로부터 데이터를 얻고 이를 이용하여 이상상태를 감지할 수 있음을 검증하였다. 간접적 실시간 감시시스템의 범용화를 통해 데이터를 축적해 활용하면, 추가비용 없이 가동을 중지하지 않고 사용할 수 있을 뿐만 아니라 미리 고장을 예측하고 필요한 경우에만 조치를 취하는 고장예지기술, 이상상태를 이중으로 감시하는 신뢰도 높은 건전성 관리 기술을 통해 유지보수비용과 위험도를 대폭적으로 감소시키고, 보안위협에 대한 대비가 가능하다.
현재 국내 외 제조 산업은 기업 시스템의 노후화 등의 많은 문제들이 발생하고 있다. 현재의 자동차 부품공장에서의 불량품에 대한 처리방법은 제품의 생산이 완료된 후 테스트 단계를 거쳐 양품과 불량품을 분류하고 불량품이 발생하면 생산을 중단하고 생산라인의 상태를 점검하는 방식이다. 본 연구에서는 자동차 부품공장의 생산라인에서 불량품 생산을 줄이고 생산라인 가동시간의 지연을 줄이기 위한 생산성 향상을 위한 모니터링 솔루션에 대해 제안한다. 생산성 향상을 위한 모니터링 솔루션은 제품 조립의 각 단계마다 테스트를 통해 데이터를 수집하고, 수집한 데이터에서 불량이 예상되면 알람기능을 이용해서 경고를 하도록 설계하였다. 경고 메시지를 통해 불량이 예상되는 곳에 대해 조기에 조치하여 불량품이 나올 확률을 최소한으로 하고 제품의 생산지연 시간을 줄이는 것을 목표로 한다.
산업 응용분야에서 유도전동기 구동시스템의 예상치 않은 고장은 전체 계통의 정지, 막대한 손실 등을 가져올 수 있다. 이러한 문제점을 해결하는 방법 중에 하나로서 본 논문은 유도전동기 구동을 위한3상 전압형 PWM 인버터에 개방-스위치 손상의 고장진단에 대하여 연구한다. 고장진단 방법으로는, 먼저 고장의 특징추출을 위하여 3상 전류를 d-q 전류로 변환한 후 평균 전류벡터를 구한다. 다음으로 여러 종류의 고장 패턴을 진단하기 위하여 한 인공지능 알고리즘을 제안한다. 제안된 기법은 일반적인 뉴로-퍼지 시스템(adaptive neuro-fuzzy algorithm)의 전제 부에 클러스터링을 도입한 기법으로 적은 계산 양과 좋은 성능을 갖는다. 최종적으로, 여러 불확실한 요소를 가진 고장계통에 대하여 제안된 알고리즘의 유용성을 모의실험에 의해 검증하였다.
일반인 중 심정지를 목격할 가능성이 가장 높은 중년층 여성들을 대상으로 숫자를 세는 방법에 따른 가슴압박소생술의 질과 피로도를 비교하여 최초반응자로서의 역할을 위한 심폐소생술 교육 프로그램을 마련하는데 기초자료를 제공하고자 한다. 3시간의 기본인명구조술 교육을 실시한 후, 확률할당을 통해 45명씩 두 그룹으로 배정하였다. 가슴압박소생술 도중 큰소리로 숫자를 세는 그룹 A, 숫자를 세지 않는 그룹 B로 나누어 인체모형에 2분간의 연구를 진행 하였다. 두 그룹간 가슴압박의 질은 유의한 차이를 보이지 않으면서 가슴압박의 중단시간이 단축되었고, 시간의 경과에 따라 흉부압박의 깊이가 줄어드는 빈도 또한 의미 있게 낮았다. 또한 가슴압박소생술 후 본인이 느끼는 피로도 또한 의미 있게 낮았다.
With the increased size and flexibility of the tower and blades, structural vibrations are becoming a limiting factor towards the design of even larger and more powerful wind turbines. Research into the use of vibration mitigation devices in the turbine tower has been carried out but the use of dampers in the blades has yet to be investigated in detail. Mitigating vibrations will increase the design life and hence economic viability of the turbine blades and allow for continual operation with decreased downtime. The aim of this paper is to investigate the effectiveness of Semi-Active Tuned Mass Dampers (STMDs) in reducing the edgewise vibrations in the turbine blades. A frequency tracking algorithm based on the Short Time Fourier Transform (STFT) technique is used to tune the damper. A theoretical model has been developed to capture the dynamic behaviour of the blades including the coupling with the tower to accurately model the dynamics of the entire turbine structure. The resulting model consists of time dependent equations of motion and negative damping terms due to the coupling present in the system. The performances of the STMDs based vibration controller have been tested under different loading and operating conditions. Numerical analysis has shown that variation in certain parameters of the system, along with the time varying nature of the system matrices has led to the need for STMDs to allow for real-time tuning to the resonant frequencies of the system.
노화에 의한 시스템의 예기치 않은 장애 발생은 예방 관리 기능을 수행함으로써 줄일 수 있으며, 이를 통해 시스템의 가용도를 높일 수 있다. 예방 관리 기법은 크게 시간 기반과 조건 기반의 두 가지로 나눌 수 있다. 시간 기반 방식은 정해진 시간 간격마다 수행되고, 조건 기반 방식은 시스템 상태가 특정 조건을 만족할 때 수행된다. 조건 기반 방식은 시간 기반 방식과 비교했을 때 예방 관리의 효율성을 향상시킬 수 있다는 장점이 있다. 본 논문은 노화 상태에서 일정 시간이 지난 후 예방 관리를 수행하게 되는 시스템을 분석할 수 있는 확률 모형을 제시한다. 제시한 모형은 현실적인 상황을 반영하여 비 마르코비안 모형으로 모델링한다. 해당 확률 모형을 수학적으로 해석하여 정상 상태에서의 시스템 가용도와 수익을 분석한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.