• Title/Summary/Keyword: downstream areas

Search Result 251, Processing Time 0.021 seconds

Analysis of Flood Control Effects of Heightening of Agricultural Reservoir Dam (농업용 저수지 증고에 따른 홍수조절효과 분석)

  • Lee, Gwan Jae;Park, Ki Wook;Jung, Young Hun;Jung, In Kyun;Jung, Kwang Wook;Jeon, Ji Hong;Lee, Ji Min;Lim, Kyoung Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.4
    • /
    • pp.83-93
    • /
    • 2013
  • Annual average precipitation of Korea is 1,277 mm and around 2/3 of annual precipitation and 74 % of available water resources occurred during monsoon period. In recent years, many agricultural reservoirs have been heightened to increase flood control capacity, reduce flooding damage at downstream areas, and provide sustainable environmental flow during drought period. Thus in this study, the flood control effects of heightening of reservoir banks were simulated with HEC-ResSim and HEC-RAS models. These modes were applied to Bonghak reservoir and it was found that flood control effects were 3~4.5 % with 7 -m heightening. Also, with proper operation (1 m lower of full water level) of reservoir right before the monsoon period, flooding at downstream could be prevented even with design storm of 80 -year recurrence interval. As shown in this study, heightening of agricultural reservoir provides positive effects in flood control and flood damage reduction.

Evaluation of Benthic Macroinvertebrate Diversity in a Stream of Abandoned Mine Land Based on Environmental DNA (eDNA) Approach

  • Bae, Mi-Jung;Ham, Seong-Nam;Lee, Young-Kyung;Kim, Eui-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.54 no.3
    • /
    • pp.221-228
    • /
    • 2021
  • Recently, environmental DNA (eDNA)-based metabarcoding approaches have been proposed to evaluate the status of freshwater ecosystems owing to various advantages, including fast and easy sampling and minimal habitat disruption from sampling. Therefore, as a case study, we applied eDNA metabarcoding techniques to evaluate the effects of an abandoned mine land located near a headwater stream of Nakdonggang River, South Korea, by examining benthic macroinvertebrate diversity and compared the results with those obtained using the traditional Surber-net sampling method. The number of genera was higher in Surber-net sampling (29) than in the eDNA analysis (20). The genus richness tended to decrease from headwater to downstream in eDNA analysis, whereas richness tended to decrease at sites with acid-sulfated sediment areas using Surber-net sampling. Through cluster analysis and non-metric multidimensional scaling, the sampling sites were differentiated into two parts: acid-sulfated and other sites using Surber-net sampling, whereas they were grouped into the two lowest downstream and other sites using eDNA sampling. To evaluate freshwater ecosystems using eDNA analysis in practical applications, it is necessary to constantly upgrade the methodologies and compare the data with field survey methods.

Image-based characterization of internal erosion around pipe in earth dam

  • Dong-Ju Kim;Samuel OIamide Aregbesola;Jong-Sub Lee;Hunhee Cho;Yong-Hoon Byun
    • Computers and Concrete
    • /
    • v.33 no.5
    • /
    • pp.481-496
    • /
    • 2024
  • Internal erosion around pipes can lead to the failure of earth dams through various mechanisms. This study investigates the displacement patterns in earth dam models under three different failure modes due to internal erosion, using digital image correlation (DIC) methods. Three failure modes—erosion along a pipe (FM1), pipe leakage leading to soil erosion (FM2), and erosion in a pipe due to defects (FM3)—are analyzed using two- and three-dimensional image- processing techniques. The internal displacement of the cross-sectional area and the surface displacement of the downstream slope in the dam models are monitored using an image acquisition system. Physical model tests reveal that FM1 exhibits significant displacement on the upper surface of the downstream slope, FM2 shows focused displacement around the pipe defect, and FM3 demonstrates increased displacement on the upstream slope. The variations in internal and surface displacements with time depend on the segmented area and failure mode. Analyzing the relationships between internal and surface displacements using Pearson correlation coefficients reveals various displacement patterns for the segmented areas and failure modes. Therefore, the image-based characterization methods presented in this study may be useful for analyzing the displacement distribution and behavior of earth dams around pipes, and further, for understanding and predicting their failure mechanisms.

Development of Agricultural Water Circulation Rate Considering Agricultural Reservoir and Irrigation District (농업용 저수지 및 관개지구를 고려한 농업유역 물순환율 개발)

  • Kim, Seokhyeon;Song, Jung-Hun;Hwang, Soonho;Kim, Hak-Gwan;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.2
    • /
    • pp.83-95
    • /
    • 2020
  • The water circulation in agricultural watersheds changes with the operation of agricultural reservoirs, it is necessary to classify and evaluate them into upstream, agricultural reservoirs, irrigation districts, and downstream. Therefore, in this study, we developed the agricultural water circulation rate (AWCR) considering an agricultural reservoir and irrigation district by improving the water circulation rate of the Water environmental conservation Act. we applied it to Jinwi watershed using the module-based hydrologic analysis system to simulate the water circulation for agricultural reservoirs and irrigation areas. The model performance during the validation period was NSE of 0.762 for the downstream stream and 0.682 for the reservoir level. And the hydrograph separation model was applied to separate the direct and baseflow. As a result of this study, The AWCR of Jinwi watershed was 71.8% on average, which was higher than the water circulation rate estimated by the downstream hydrograph separation.

Evaluation of Pollution Level for Organic Matter and Trace Metals in Sediments around Taehwa River Estuary, Ulsan (울산 태화강 하구역 퇴적물의 유기물 및 미량금속 오염도 평가)

  • Hwang, Dong-Woon;Lee, In-Seok;Choi, Minkyu;Kim, Chung-Sook;Kim, Hyung-Chul
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.4
    • /
    • pp.542-554
    • /
    • 2015
  • Grain size, the content of ignition loss (IL), and the concentrations of chemical oxygen demand (COD), acid volatile sulfide (AVS), and trace metals (Fe, Mn, Cu, Pb, Zn, Cd, Cr, As, and Hg) in surface sediments from the Taehwa River estuary, Ulsan, were measured to evaluate pollution levels and potential ecological risks of organic matter and trace metals in estuarine sediment. The mean grain size (Mz) of sediments in the study region ranged from $-0.8-7.7{\varphi}$ (mean $2.8{\pm}2.4{\varphi}$). Surface sediments in the upstream region of the Taehwa River were mainly composed of coarse sediments compared to the downstream region. The concentrations of IL, COD, AVS and trace metals in the sediment were much higher at downstream sites of Myeongchon Bridge in the vicinity of industrial complexes than at upstream sites of those in the vicinity of the residential areas due to the anthropogenic input of organic matter and trace metals by industrial activities. On the basis of several geochemical assessment techniques [sediment quality guidelines (SQGs), enrichment factor (EF), geoaccumulation index ($I_{geo}$), pollution load index (PLI) and ecological risk index (ERI)], the surfaces sediments in the study region are not highly polluted for trace metals, except for As. However, the higher concentrations in downstream study regions of the Taehwa River could impact benthic organisms including shellfish (i.e. Manila clam) in sediments.

A study on Geographical Images of Nakdong River Region Represented in the Modern Poetry (현대시를 통한 낙동강 수계 지역의 지리적 이미지 연구)

  • Kim, Soo-Jeong;Cho, Chul-Ki
    • Journal of the Korean association of regional geographers
    • /
    • v.21 no.4
    • /
    • pp.673-690
    • /
    • 2015
  • This study is to consider the geographical images of Nakdong River region represented in the Modern Poetry. The findings are as follows. First, the change aspect of the poetry around Nakdong River area shows the social phenomenon of population movement, economic deprivation symptoms, the Korean War, economic development plans, the industrialization and spatial inequalities, environmental problems and environmental poetry, and various environmental issues, etc. Second, the poetry about Nakdong River can be classified by geographical area, showing a humanistic geographical image of the sense of place, natural geographical images about geomorphology and climate, and regional development and environmental pollution. Finally, the large number of poetry describes the beautiful terrain and the sense of place of poet, among ones targeting the upsteam of Nakdong River. The one in middle and downstream areas, however, reflected the reality and was social criticism mostly. This is because that, compares to the upstream, many large cities are distributed in the downstream area and the river becomes increasingly contaminated as it flows to the downstream.

  • PDF

Evidences of in Situ Remediation from Long Term Monitoring Data at a TCE-contaminated Site, Wonju, Korea

  • Lee, Seong-Sun;Kim, Hun-Mi;Lee, Seung Hyun;Yang, Jae-Ha;Koh, Youn Eun;Lee, Kang-Kun
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.6
    • /
    • pp.8-17
    • /
    • 2013
  • The contamination of chlorinated ethenes at an industrial complex, Wonju, Korea, was examined based on sixteen rounds of groundwater quality data collected from 2009 to 2013. Remediation technologies such as soil vapor extraction, soil flushing, biostimulation, and pumping-and-treatment have been applied to eliminate the contaminant sources of trichloroethylene (TCE) and to prevent the migration of TCE plume from remediation target zones. At each remediation target zone, temporal monitoring data before and after the application of remediation techniques showed that the aqueous concentrations of TCE plume present at and around the main source areas decreased significantly as a result of remediation technologies. However, the TCE concentration of the plumes at the downstream area remained unchanged in response to the remediation action, but it showed a great fluctuation according to seasonal recharge variation during the monitoring period. Therefore, variations in the contaminant flux across three transects were analyzed. Prior to the remediation action, the concentration and mass discharges of TCE at the transects were affected by seasonal recharge variation and residual DNAPLs sources. After the remediation, the effect of remediation took place clearly at the transects. By tracing a time-series of plume evolution, a greater variation in the TCE concentrations was detected at the plumes near the source zones compared to the relatively stable plumes in the downstream. The difference in the temporal profiles of TCE concentrations between the plumes in the source zone and those in the downstream could have resulted from remedial actions taken at the source zones. This study demonstrates that long term monitoring data are useful in assessing the effectiveness of remediation practices.

A Study on Changes in Local Meteorological Fields due to a Change in Land Use in the Lake Shihwa Region Using Synthetic Land Cover Data and High-Resolution Mesoscale Model (합성토지피복자료와 고해상도 중규모 모형을 이용한 시화호 지역의 토지이용 변화에 따른 주변 기상장 변화 연구)

  • Park, Seon Ki;Kim, Jee-Hee
    • Atmosphere
    • /
    • v.21 no.4
    • /
    • pp.405-414
    • /
    • 2011
  • In this study, the influence of a change in land use on the local weather fields is investigated around the Lake Shihwa area using synthetic land cover data and a high-resolution mesoscale model - the Weather Research and Forecasting (WRF). The default land cover data generally used in the WRF is based on the land use category of the United States Geological Survey (USGS), which erroneously presents most land areas of the Korean Peninsula as savannas. To revise such a fault, a multi-temporal land cover data, provided by the Ministry of Environment of Korea, was employed to generate a land cover map of 2005 subject to the land use in Korea at that time. A new land cover map of 1989, before the construction of the Lake Shihwa, was made based on the 2005 map and the Landsat 4-5 TM satellite images of two years. Over the areas where the land use had been changed (e.g., from sea to wetlands, towns, etc.) due to the Lake Shihwa development project, the skin temperature decreased by up to $8^{\circ}C$ in the winter case while increased by as much as $14^{\circ}C$ in the summer case. Changes in the water vapor mixing ratio were mostly affected by advection and topography in both seasons, with considerable increase in the summer case due to continuous sea breeze. Local decrease in water vapor occurred over high land use change areas and/or over downstream of such areas where alteration in wind fields were induced by changes in skin temperature and surface roughness at the areas of land use changes. The albedo increased by about 0.1% in the regions where sea was converted into wetland. In the regions where urban areas were developed, such as Songdo New Town and Incheon International Airport, the albedo increased by up to 0.16%.

Arsenic environmental contamination, chemical speciation and its behaviour in the water system from some abandoned Au-Ag mines, Korea

  • Yi Ji-Min;Chon Hyo-Taek;Lee Jin-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.522-525
    • /
    • 2003
  • Mine waters, surface waters and groundwaters were sampled around seven Au-Ag mine areas (Dongil, Okdong, Dongjung, Songcheon, Ssangjeon, Dogok and Gubong Au-Ag mines). The main contamination sources of As in these abandoned Au-Ag mines can be suggested as mine tailings and waste rocks including the sulfide gangue minerals (arsenopyrite). The relatively high concentration of As in mine waters was shown in the Dongil (524 ${\mu}g/L$) and the Dogok (56 ${\mu}g/L$) mine areas. Arsenic concentrations in stream waters from the Dongil ($0.9\~118{\mu}g/L$), the Songchon ($0.8\~63{\mu}g/L$), the Ssangjeon ($1.6\~109{\mu}g/L$) and the Gubong ($3.6\~63{\mu}g/L$) mine areas exceeded the permissible level for stream water in Korea. Groundwaters collected from the Dongil ($0.9\~64{\mu}g/L$ ), the Okdong ($0.2\~69{\mu}g/L$) and the Gubong ($0.5\~101{\mu}g/L$) mine areas contained high As concentration to cause the arsenicosis in these areas. In As speciation, the concentration ratios of As(III) to As(total) present up to $75\%$ and $100\%$ in stream waters from the Okdong and the Songcheon mines, and $70\%$ in groundwaters from the Okdong and the Dongjung mines. Arsenic concentration decreases downstream from the tailing dump correlatively with pH and Fe concentration. Highly elevated As concentrations are found in the dry season (such as April and March) than in the wet season (September) due to the dilution effect by heavy rain during summer in stream waters from the Dongil and the Songcheon mine areas.

  • PDF

Designing a Decentralized Stormwater Management Corridor for a Flood-Prone Watershed using Surface Runoff Analysis (지표유출수 분석을 통한 상습침수유역의 분산식 우수관리통로 설계)

  • Lee, Seul;Lee, Yumi
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.3
    • /
    • pp.13-26
    • /
    • 2015
  • Many urban areas in Korea suffer from repeated flood damage during intensive rainfall due to an increase in impervious areas caused by rapid urbanization and deteriorating sewage systems. A centralized stormwater management system has caused severe flood damage in an area that has proven unable to accommodate recent climate change and a rise in precipitation. Most flooding prevention projects that have been recently implemented focus on increasing drainage system capacity by expanding the size of sewer pipes and adding pumping stations in downstream areas. However, such measures fail to provide sustainable solutions since they cannot solve fundamental problems to reduce surface runoff caused by urbanization across the watershed. A decentralized stormwater management system is needed that can minimize surface runoff and maximize localized retention capacity, while maintaining the existing drainage systems. This study proposes a stormwater management corridor for the flood-prone watershed in the city of Dongducheon. The corridor would connect the upstream, midstream, and downstream zones using various methods for reducing stormwater runoff. The research analyzed surface runoff patterns generated across the watershed using the Modified Rational Method considering the natural topography, land cover, and soil characteristics of each sub-watershed, as well as the urban fabric and land use. The expected effects of the design were verified by the retainable volume of stormwater runoff as based on the design application. The results suggest that an open space network serve as an urban green infrastructure, potentially expanding the functional and scenic values of the landscape. This method is more sustainable and effective than an engineering-based one, and can be applied to sustainable planning and management in flood-prone urban areas.