• Title/Summary/Keyword: downregulation

Search Result 535, Processing Time 0.024 seconds

Expression of lipid metabolism genes provides new insights into intramuscular fat deposition in Laiwu pigs

  • Wang, Hui;Wang, Jin;Yang, Dan-dan;Liu, Zong-li;Zeng, Yong-qing;Chen, Wei
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.3
    • /
    • pp.390-397
    • /
    • 2020
  • Objective: The objective of this study was to measure the special expression pattern of lipid metabolism genes and investigate the molecular mechanisms underlying intramuscular fat (IMF) deposition in Longissimus dorsi muscle of Laiwu pigs. Methods: Thirty-six pigs (Laiwu n = 18; Duroc×Landrace×Yorkshire n = 18) were used for the measurement of the backfat thickness, marbling score, IMF content, and expression of lipid metabolism genes. Results: Significant correlations were found between IMF content and the mRNA expression of lipid metabolism genes. Of the 14 fat deposition genes measured, fatty acid synthase (FASN) showed the strongest correlation (r = 0.75, p = 0.001) with IMF content, and of the 6 fat removal genes, carnitine palmitoyl transferase 1B (CPT1B) exhibited the greatest negative correlation (r = -0.66, p = 0.003) with IMF content in Laiwu pig. Multiple regression analysis showed that CPT1B, FASN, solute carrier family 27 member 1 (SLC27A1), and fatty acid binding protein 3 (FABP3) contributed 38% of the prediction value for IMF content in Laiwu pigs. Of these four variables, CPT1B had the greatest contribution to IMF content (14%) followed by FASN (11%), SLC27A1 (9%), and FABP3 (4%). Conclusion: Our results indicate that the combined effects of an upregulation in fat deposition genes and downregulation in fat removal genes promotes IMF deposition in Laiwu pigs.

MiRNA-15a Mediates Cell Cycle Arrest and Potentiates Apoptosis in Breast Cancer Cells by Targeting Synuclein-γ

  • Li, Ping;Xie, Xiao-Bing;Chen, Qian;Pang, Guo-Lian;Luo, Wan;Tu, Jian-Cheng;Zheng, Fang;Liu, Song-Mei;Han, Lu;Zhang, Jian-Kun;Luo, Xian-Yong;Zhou, Xin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.16
    • /
    • pp.6949-6954
    • /
    • 2014
  • Background: Recent studies have indicated that microRNA-15a (miR-15a) is dysregulated in breast cancer (BC). We aimed to evaluate the expression of miR-15a in BC tissues and corresponding para-carcinoma tissues. We also focused on effects of miR-15a on cellular behavior of MDA-MB-231 and expression of its target gene synuclein-${\gamma}$ (SNCG). Materials and Methods: The expression levels of miR-15a were analysed in BC formalin fixed paraffin embedded (FFPE) tissues by microarray and quantitative real-time PCR. CCK-8 assays, cell cycle and apoptosis assays were used to explore the potential functions of miR-15a in MDA-MB-231 human BC cells. A luciferase reporter assay confirmed direct targets. Results: Downregulation of miR-15a was detected in most primary BCs. Ectopic expression of miR-15a promoted proliferation and suppressed apoptosis in vivo. Further studies indicated that miR-15a may directly interact with the 3'-untranslated region (3'-UTR) of SNCG mRNA, downregulating its mRNA and protein expression levels. SNCG expression was negatively correlated with miR-15a expression. Conclusions: MiR-15a has a critical role in mediating cell cycle arrest and promoting cell apoptosis of BC, probably by directly targeting SNCG. Thus, it may be involved in development and progression of BC.

Ultrasound Targeted Microbubble Destruction for Novel Dual Targeting of HSP72 and HSC70 in Prostate Cancer

  • Wang, Hang-Hui;Song, Yi-Xin;Bai, Min;Jin, Li-Fang;Gu, Ji-Ying;Su, Yi-Jin;Liu, Long;Jia, Chao;Du, Lian-Fang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.3
    • /
    • pp.1285-1290
    • /
    • 2014
  • The aim was to determine whether ultrasound targeted microbubble destruction (UTMD) promotes dual targeting of HSP72 and HSC70 for therapy of castration-resistant prostate cancer (CRPC), to improve the specific and efficient delivery of siRNA, to induce tumor cell specific apoptosis, and to find new therapeutic targets specific of CRPC.VCaP cells were transfected with siRNA oligonucleotides. HSP70, HSP90 and cleaved caspase-3 expression were determined by real-time quantitative polymerase chain reaction and Western blotting. Apoptosis and transfection efficiency were assessed by flow cytometry. Cell viability assays were used to evaluate safety. We found HSP72, HSC70 and HSP90 expression to be absent or weak in normal prostate epithelial cells (RWPE-1), but uniformly strong in prostate cancerous cells (VCaP). UTMD combined with dual targeting of HSP72 and HSC70 siRNA improve the efficiency of transfection, cell uptake of siRNA, downregulation of HSP70 and HSP90 expression in VCaP cells at the mRNA and protein level, and induction of extensive tumor-specific apoptosis. Cell counting kit-8 assays showed decreased cellular viability in the HSP72/HSC70-siRNA silenced group. These results suggest that the combination of UTMD with dual targeting HSP70 therapy for PCa may be most efficacious, providng a novel, reliable, non-invasive, safe targeted approach to improve the specific and efficient delivery of siRNA, and achieve maximal effects.

Lactobacillus casei LC01 Regulates Intestinal Epithelial Permeability through miR-144 Targeting of OCLN and ZO1

  • Hou, Qiuke;Huang, Yongquan;Wang, Yan;Liao, Liu;Zhu, Zhaoyang;Zhang, Wenjie;Liu, Yongshang;Li, Peiwu;Chen, Xinlin;Liu, Fengbin
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.10
    • /
    • pp.1480-1487
    • /
    • 2020
  • Our previous report determined that miR-144 is a key regulator of intestinal epithelial permeability in irritable bowel syndrome with diarrhea (IBS-D) rats. Recent evidence has shown that lactobacilli play an important role in the relief of IBS-D symptoms. However, few studies have addressed the mechanisms by which microRNAs and lactobacilli exert their beneficial effects on intestinal epithelial permeability. Hence, to elucidate whether miRNAs and lactobacilli play roles in intestinal epithelial barrier regulation, we compared miRNA expression levels in intestinal epithelial cells (IECs) under Lactobacillus casei (L. casei LC01) treatment. IECs and L. casei LC01 were co-cultured and then subjected to microRNA microarray assay. qRT-PCR, western blot and ELISA were used to detect the expression of occludin (OCLN) and zonula occludens 1 (ZO1/TJP1). The interaction between miRNAs and L. casei LC01 acting in IECs was investigated through transfection of RNA oligoribonucleotides and pcDNA 3.1 plasmid. The results are as follows: 1) L. casei LC01 decreased the expression of miR-144 and FD4 and promoted OCLN and ZO1 expression in IECs; 2) L. casei LC01 enhanced the barrier function of IECs via downregulation of miR-144 and upregulation of OCLN and ZO1; 3) Under L. casei LC01 treatment, OCLN and ZO1 overexpression could partially eliminate the promoting effect of miR-144 on intestinal permeability in IECs. Our results demonstrate that L. casei LC01 regulates intestinal permeability of IECs through miR-144 targeting of OCLN and ZO1. L. casei LC01 can be a possible therapeutic target for managing dysfunction of the intestinal epithelial barrier.

Mutant p53-Notch1 Signaling Axis Is Involved in Curcumin-Induced Apoptosis of Breast Cancer Cells

  • Bae, Yun-Hee;Ryu, Jong Hyo;Park, Hyun-Joo;Kim, Kwang Rok;Wee, Hee-Jun;Lee, Ok-Hee;Jang, Hye-Ock;Bae, Moon-Kyoung;Kim, Kyu-Won;Bae, Soo-Kyung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.4
    • /
    • pp.291-297
    • /
    • 2013
  • Notch1 has been reported to be highly expressed in triple-negative and other subtypes of breast cancer. Mutant p53 (R280K) is overexpressed in MDA-MB-231 triple-negative human breast cancer cells. The present study aimed to determine whether the mutant p53 can be a potent transcriptional activator of the Notch1 in MDA-MB-231 cells, and explore the role of this mutant p53-Notch1 axis in curcumin-induced apoptosis. We found that curcumin treatment resulted in an induction of apoptosis in MDA-MB-231 cells, together with downregulation of Notch1 and its downstream target, Hes1. This reduction in Notch1 expression was determined to be due to the decreased activity of endogenous mutant p53. We confirmed the suppressive effect of curcumin on Notch1 transcription by performing a Notch1 promoter-driven reporter assay and identified a putative p53-binding site in the Notch1 promoter by EMSA and chromatin immunoprecipitation analysis. Overexpression of mutant p53 increased Notch1 promoter activity, whereas knockdown of mutant p53 by small interfering RNA suppressed Notch1 expression, leading to the induction of cellular apoptosis. Moreover, curcumin-induced apoptosis was further enhanced by the knockdown of Notch1 or mutant p53, but it was decreased by the overexpression of active Notch1. Taken together, our results demonstrate, for the first time, that Notch1 is a transcriptional target of mutant p53 in breast cancer cells and suggest that the targeting of mutant p53 and/or Notch1 may be combined with a chemotherapeutic strategy to improve the response of breast cancer cells to curcumin.

Downregulation of $\textrm{NF}_{-{\kappa}}\textrm{B}$ activation in human keratinocytes by melanogenic inhibitors

  • Ahn, Kwang-Seok;Lee, Jinseon;Kim, Yeong-Shik
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.780-803
    • /
    • 2003
  • Exposure of skin cells, particularly keratinocytes to various nuclear factor-kappaB ($\textrm{NF}_{-{\kappa}}\textrm{B}$) activators [e.g. tumor necrosis factor-$\alpha$, interleukin-1, lipopolysaccharides, and ultraviolet light] leads to phosphorylation and degradation of the inhibitory protein, $\textrm{I}_{{\kappa}}\textrm{B}$. Liberated $\textrm{NF}_{-{\kappa}}\textrm{B}$ is translocated into the nucleus where it can change or alter expression of target genes, resulting in the secretion of extracellular signaling molecules including melanotrophic factors affecting melanocyte. In order to demonstrate the possible role of $\textrm{NF}_{-{\kappa}}\textrm{B}$ activation on the synthesis of melanotrophic factors from the keratinocytes, the activities of $\textrm{NF}_{-{\kappa}}\textrm{B}$ induced by melanogenic inhibitors (MIs) were determined in human HaCaT keratinocytes transfected with $\textrm{pNF}_{-{\kappa}}\textrm{B}$-SEAP-NPT plasmid. Transfectant cells released the secretory alkaline phosphatase (SEAP) as a transcription reporter in response to the $\textrm{NF}_{-{\kappa}}\textrm{B}$ activity and contain the neomycin phosphotransferase (NPT) gene for the dominant selection marker for geneticin resistance. MIs such as niacinamide, kojic acid, hydroquinone, resorcinol, arbutin, and glycolic acid were preincubated with transfectant HaCaT cells for 3 h and then ultraviolet B (UVB) was irradiated. $\textrm{NF}_{-{\kappa}}\textrm{B}$ activation was measured with the SEAP reporter gene assay using a fluorescence detection method. Of the Mis tested, kojic acid ($IC_{50}$/ = 60 $\mu$M) was found to be the most potent inhibitor of UVB-upregulating $\textrm{NF}_{-{\kappa}}\textrm{B}$ activation in transfectant HaCaT cells, which is followed by niacinamide ($IC_{50}$/= 540 $\mu$M). Pretreatment of the transfectant HaCaT cells with the Mis, especially kojic acid and niacinamide, effectively lowered $\textrm{NF}_{-{\kappa}}\textrm{B}$ binding measured by electrophoretic mobility shift assay. Furthermore, these two inhibitors remarkably reduced the secretion level of IL-6, one of melanotrophic factors, triggered by UV-radiation of the HaCaT cells. These observations suggest that Mis working at the in vivo level might act partially through the modulation of the synthesis of melanotrophic factors in keratinocyte.

  • PDF

Thrombospondins Mediate the Adhesion of Osteoblast to Extracelluar Matrix

  • Lim, Dong-Jin;Bae, In-Ho;Jeong, Byung-Chul;Kim, Sun-Hun;Park, Bae-Keun;Kang, In-Chul;Lee, Shee-Eun;Song, Sang-Hun;Koh, Jeong-Tae
    • International Journal of Oral Biology
    • /
    • v.33 no.3
    • /
    • pp.105-111
    • /
    • 2008
  • Thrombospondins (TSP-1, TSP-2) are secretory extracellular glycoproteins that are involved in a variety of physiological processes such as tumor cell adhesion, invasion, and metastasis. The present study was undertaken to elucidate the involvement of thrombospondins in the adhesion of osteoblast-like cells using the TSP-1 or TSP-2 antisense MG63 and MC3T3-E1 cell lines. For downregulation of TSPs expression, we prepared antisense constructs for TSP-1 and TSP-2 using the pREP4 an episomal mammalian expression vector, which be able to produce the specific antisense oligonucleotides around chromosome. MG63 and MC3T3-E1 osteoblast-like cells were transfected with the antisense constructs and nonliposomal Fugene 6, and then selected under hygromycin B (50 ${\mu}g/ml$) treatment for 2 weeks. Western blot analysis revealed that expression of the TSP proteins was downregulated in the antisense cell lines. The cell adhesion assay showed that adhesive properties of TSP-1 and TSP-2 antisense MG63 cells on the polystyrene culture plate were reduced to 17% and 21% of the control cells, respectively, and those of the TSP-1 and TSP-2 antisense MC3T3-E1 cells also decreased to 19% and 27% of control, respectively. Adhesion of TSP-1 and TSP-2 antisense MC3T3-E1 cells on Type I collagen-coated culture plate decreased to 27% and 76%, respectively. These results indicate that TSP-1 and TSP-2 proteins may have an important role in adhesion of osteoblast-like cells to extracellular matrix.

Inhibition of cell growth and induction of apoptosis by acacetin in FaDu human pharyngeal carcinoma cells

  • Kang, Kyeong-Rok;Kim, Jae-Sung;Kim, Tae-Hyeon;Seo, Jeong-Yeon;Park, Jong-Hyun;Lim, Jin Woong;Yu, Sun-Kyoung;Kim, Heung-Joong;Shin, Sang Hun;Park, Bo-Ram;Kim, Chun Sung;Kim, Do Kyung
    • International Journal of Oral Biology
    • /
    • v.45 no.3
    • /
    • pp.107-114
    • /
    • 2020
  • Acacetin, which is present in damiana (Turnera diffusa) and black locust (Robinia pseudoacacia), has several pharmacologic activities such as antioxidant, anti-inflammatory, and anti-proliferative effects on cancer cells. However, the effect of acacetin on head and neck cancers has not been clearly established. This study aimed to examine the effects of acacetin on cell growth and apoptosis induction in FaDu human pharyngeal carcinoma cells. These were investigated by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay, Live/Dead cell assay, 4',6-diamidino-2-phenylindole dihydrochloride staining, caspase-3 and caspase-7 activation assay, and immunoblotting in FaDu cells. Acacetin induced FaDu cell death in a dose-dependent manner, with an estimated IC50 value of 41.9 µM, without affecting the viability of L-929 mouse fibroblasts as normal cells. Acacetin treatment resulted in nuclear condensation in the FaDu cells. It promoted the proteolytic cleavage of procaspase-3, -7, -8, and -9 with increasing amounts of the cleaved caspase isoforms in FaDu cells. Acacetin-induced apoptosis in FaDu cells was mediated by the expression of Fas and activation of caspase-8, caspase-3, and poly (ADP-ribose) polymerase. Immunoblotting showed downregulation of the anti-apoptotic mitochondrial proteins Bcl-2 and Bcl-xL, but upregulation of the mitochondria-dependent pro-apoptotic proteins Bax and Badin FaDu cells after acacetin treatment. These findings indicate that acacetin inhibits cell proliferation and induces apoptotic cell death in FaDu human pharyngeal carcinoma cells via both the death receptor-mediated extrinsic apoptotic pathway and the mitochondria-mediated intrinsic apoptotic pathway.

Feedback Control of Cyclooxygenase-2 Expression by Prostaglandin E2 in Rheumatoid Synoviocytes

  • Min, So-Youn;Jung, Young Ok;Do, Ju-Ho;Kim, So-Yang;Kim, Jeong-Pyo;Cho, Chul-Soo;Kim, Wan-Uk
    • IMMUNE NETWORK
    • /
    • v.3 no.3
    • /
    • pp.201-210
    • /
    • 2003
  • Objective: The role of prostaglandin $E_2$ (PGE2) in the etiopathogenesis of immune and inflammatory diseases has become the subject of recent debate. To determine the role of PGE2 in rheumatoid arthritis (RA), we tested the effect of exogenous PGE2 on the production of cyclooxygenase-2 (COX-2) by rheumatoid synoviocytes. Methods: Fibroblast-like synoviocytes (FLS) were prepared from the synovial tissues of RA patients, and cultured in the presence of PGE2. The COX-2 mRNA and protein expression levels were determined by RT-PCR and Western blot analysis, respectively. The PGE2 receptor subtypes in the FLS were analyzed by RT-PCR. Electrophoretic mobility shift assay (EMSA) was used to measure the NF-${\kappa}B$ binding activity for COX-2 transcription. The in vivoeffect of PGE2 on the development of arthritis was also tested in collagen induced arthritis (CIA) animals. Results: PGE2 ($10^{-11}$ to $10^{-5}M$) dose-dependently inhibited the expression of COX-2 mRNA and the COX-2 protein stimulated with IL-$1{\beta}$, but not COX-1 mRNA. NS-398, a selective COX-2 inhibitor, displayed an additive effect on PGE2-induced COX-2 downregulation. The FLS predominantly expressed the PGE2 receptor (EP) 2 and EP4, which mediated the COX-2 suppression by PGE2. Treatment with anti-IL-10 monoclonal antibodies partially reversed the PGE2-induced suppression of COX-2 mRNA, suggesting that IL-10 may be involved in modulating COX-2 by PGE2. Experiments using an inducer and an inhibitor of cyclic AMP (cAMP) suggest that cAMP is the major intracellular signal that mediates the regulatory effect of PGE2 on COX-2 expression. EMSA revealed that PGE2 inhibited the binding of NF-${\kappa}B$ in the COX-2 promoter via a cAMP dependent pathway. In addition, a subcutaneous injection of PGE2 twice daily for 2 weeks significantly reduced the incidence and severity of CIA as well as the production of IgG antibodies to type II collagen. Conclusion: Our data suggest that overproduced PGE2 in the RA joints may function as an autocrine regulator of its own synthesis by inhibiting COX-2 production and may, in part, play an anti-inflammatory role in the arthritic joints.

Selenoprotein S Suppression Enhances the Late Stage Differentiation of Proerythrocytes Via SIRT1

  • Yang, Hee-Young;Chung, Kyoung-Jin;Park, Hyang-Rim;Han, Seong-Jeong;Lee, Seung-Rock;Chay, Kee-Oh;Kim, Ick-Young;Park, Byung-Ju;Lee, Tae-Hoon
    • International Journal of Oral Biology
    • /
    • v.35 no.2
    • /
    • pp.61-67
    • /
    • 2010
  • Selenoprotein S (SelS) is widely expressed in diverse tissues where it localizes in the plasma membrane and endoplasmic reticulum. We studied the potential function of SelS in erythrocyte differentiation using K562 cells stably over-expressing SelS wild-type (WT) or one of two SelS point mutants, $U_{188}S$ or $U_{188}C$. We found that in the K562 cells treated with $1\;{\mu}M$ Ara-C, SelS gradually declined over five days of treatment. On day 4, intracellular ROS levels were higher in cells expressing SelS-WT than in those expressing a SelS mutant. Moreover, the cell cycle patterns in cells expressing SelS-WT or $U_{188}C$ were similar to the controls. The expression and activation of SIRT1 were also reduced during K562 differentiation. Cells expressing SelS-WT showed elevated SIRT1 expression and activation (phosphorylation), as well as higher levels of FoxO3a expression. SIRT1 activation was diminished slightly in cells expressing SelS-WT after treatment with the ROS scavenger NAC (12 mM), but not in those expressing a SelS mutant. After four days of Ara-C treatment, SelS-WT-expressing cells showed elevated transcription of $\beta$-globin, $\gamma$-globin, $\varepsilon$-globin, GATA-1 and zfpm-1, whereas cells expressing a SelS mutant did not. These results suggest that the suppression of SelS acts as a trigger for proerythrocyte differentiation via the ROS-mediated downregulation of SIRT1.