• Title/Summary/Keyword: downregulation

Search Result 535, Processing Time 0.023 seconds

In vitro and In vivo Antitumor Activity of Tiliacorinine in Human Cholangiocarcinoma

  • Janeklang, Somkid;Nakaew, Archawin;Vaeteewoottacharn, Kulthida;Seubwai, Wunchana;Boonsiri, Patcharee;Kismali, Gorkem;Suksamrarn, Apichart;Okada, Seiji;Wongkham, Sopit
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.17
    • /
    • pp.7473-7478
    • /
    • 2014
  • Cholangiocarcinoma (CCA) is a fatal cancer with poor prognosis and less than 10% of CCA patients can be offered surgical cure. Conventional chemotherapy results in unfavorable outcomes. At present, plant-derived compounds are gaining interest as potential cancer therapeutics, particularly for treatment-refractory cancers. In this study, antitumor activity of tiliacorinine, the major alkaloid isolated from a tropical plant, on CCA was first demonstrated. Antiproliferative effects of tiliacorinine on human CCA cell lines were investigated using SRB assays. Acridine orange/ethidium bromide staining, flow cytometric analysis and DNA laddering assays were used for apoptotic determination. Apoptosis-related proteins were verified by Western blotting and antitumor activity of tiliacorinine in vivo was demonstrated in CCA xenografted mice. Tiliacorinine significantly inhibited proliferation of human CCA cell lines with $IC_{50}$ $4.5-7{\mu}M$ by inducing apoptosis through caspase activation, upregulation of BAX, and downregulation of $Bcl_{xL}$ and XIAP. Tiliacorinine considerably reduced tumor growth in CCA xenografted mice. These results demonstrated antitumor effects of tiliacorinine on human CCA in vitro and in vivo. Tiliacorinine may be an effective agent for CCA treatment.

MiR-886-5p Inhibition Inhibits Growth and Induces Apoptosis of MCF7 Cells

  • Zhang, Lei-Lei;Wu, Jiang;Liu, Qiang;Zhang, Yan;Sun, Zhu-Lei;Jing, Hong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.4
    • /
    • pp.1511-1515
    • /
    • 2014
  • Background and Aims: To explore the molecular mechanisms of miR-886-5p in breast cancer., we examined roles in inhibiting growth and migration of MCF-7 cells. Methods: MiR-886-5p mimics and inhibitors were used to express or inhibit MiR-886-5p, respectively, and MTT and clone formation assays were used to determine the survival and proliferation. Hoechst 33342/ PI double staining was applied to detect apoptosis. The expression of caspase-3, caspase-8, caspase-9, MT1-MMP, VEGF-C and VEGF-D was detected by Western blotting, and the levels of MMP2 and MMP9 secreted from MCF-7 cells were assessed by ELISA. MCF-7 cell migration was determined by wound healing and Transwell assays. Results: We found that the growth of MCF-7 cells was inhibited upon decreasing miR-886-5p levels. Inhibiting miR-866-5p also significantly induced apoptosis and decreased the migratory capacity of these cells. The expression of VEGF-C, VEGF-D, MT1-MMP, MMP2, and MMP9 was also found to be decreased as compared to controls. Conclusions: Our data show that downregulation of miR-886-5p expression in MCF-7 cells could significantly inhibit cell growth and migration. This might imply that inhibiting miR-886-5p could be a therapeutic strategy in breast cancer.

Tyrosine 1045 Codon Mutations in Exon 27 of EGFR are Infrequent in Oral Squamous Cell Carcinomas

  • Tushar, Mehta Dhaval;Ramanathan, Arvind
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.7
    • /
    • pp.4279-4282
    • /
    • 2013
  • Background: The activation and inactivation of receptor tyrosine kinases are tightly regulated to ensure faithful replication of cells. After having transduced extracellular growth activating signals, activated EGFR is subjected to downregulation either by clathrin mediated endocytosis or c-Cbl mediated proteasome degradation depending on the ligand concentration. c-Cbl is an ubiquitin ligase which requires a phosphorylated tyrosine residue at position 1045 in the cytoplasmic domain of EGFR to interact and add ubiquitin molecules. While activating mutations in exons 19 and 21 have been associated with the development of several cancers, the status of mutations at tyrosine 1045 coding exon 27 of EGFR remain to be investigated. Consistently, defective phosphorylation at 1045 has been associated with sustained phosphorylation of EGFR in non-small lung carcinomas. Hence in the present study we investigated the genetic status of the tyrosine 1045 coding site within exon 27 of EGFR gene to explore for possible occurrence of mutations in this region, especially since no studies have addressed this issue so far. Materials and Methods: Tumor chromosomal DNA isolated from thirty five surgically excised oral squamous cell carcinoma tissues was subjected to PCR amplification with intronic primers flanking the tyrosine 1045 coding exon 27 of EGFR gene. The PCR amplicons were subsequently subjected to direct sequencing to elucidate the mutation status. Results: Sequence analysis identified no mutations in the tyrosine 1045 codon of EGFR in any of the thirty five samples that were analyzed. Conclusions: The lack of identification of mutation in the tyrosine 1045 codon of EGFR suggests that mutations in this region may be relatively rare in oral squamous cell carcinomas. To the best of our knowledge, this study is the first to have explored the genetic status of exon 27 of EGFR in oral squamous cell carcinoma tissue samples.

Anti-Proliferative Activity of Ethanol Extracts from Taxilli Ramulus (Taxillus chinensis (DC.) Danser) Through Cyclin D1 Proteasomal Degradation in Human Colorectal Cancer Cells

  • Park, Gwang Hun;Song, Hun Min;Park, Su Bin;Park, Ji Hye;Shin, Myeong Su;Son, Ho-Jun;Um, Yurry;Jeong, Jin Boo
    • Korean Journal of Plant Resources
    • /
    • v.30 no.6
    • /
    • pp.640-646
    • /
    • 2017
  • In this study, we elucidated anti-cancer activity and potential molecular mechanism of 70% ethanol extracts from Taxilli Ramulus (Taxillus chinensis (DC.) Danser) (TR-E70) against human colorectal cancer cells. Anti-cell proliferative effect of TR-E70 was evaluated by MTT assay. The effect of TR-E70 on the expression of cyclin D1 in the protein and mRNA level was evaluated by Western blot and RT-PCR, respectively. TR-E70 suppressed the proliferation of human colorectal cancer cell lines, HCT116 and SW480. Although TR-E70 decreased cyclin D1 expression in protein and mRNA level, decreased level of cyclin D1 protein by TR-E70 more dramatically occurred than that of cyclin D1 mRNA. Cyclin D1 downregulation by TR-E70 was attenuated in presence of MG132. In addition, TR-E70 phosphorylated threonine-286 (T286) of cyclin D1. TR-E70-mediated cyclin D1 degradation was blocked in presence of LiCl as an inhibitor $GSK3{\beta}$ but not PD98059 as an ERK1/2 inhibitor and SB203580 as a p38 inhibitor. Our results suggest that TR-E70 may downregulate cyclin D1 as one of the potential anti-cancer targets through $GSK3{\beta}$-dependent cyclin D1 degradation. From these findings, TR-E70 has potential to be a candidate for the development of chemoprevention or therapeutic agents for human colorectal cancer.

Resveratrol-Enriched Rice Down-Regulates Melanin Synthesis in UVB-Induced Guinea Pigs Epidermal Skin Tissue

  • Lee, Taek Hwan;Seo, Jae Ok;Do, Moon Ho;Ji, Eunhee;Baek, So-Hyeon;Kim, Sun Yeou
    • Biomolecules & Therapeutics
    • /
    • v.22 no.5
    • /
    • pp.431-437
    • /
    • 2014
  • Synthetic compounds that are used in the clinic to regulate skin hyperpigmentation, such as arbutin, hydroquinone, and kojic acid, are only moderately effective. But, their use is limited by side effects. As part of an effort to overcome the limitations, we developed resveratrol-enriched rice (RR) using genetic engineering technique. Each of resveratrol and rice has been reported to produce anti-melanogenic effects. Therefore, we hypothesized that RR would show more anti-melanogenic effects than those of resveratrol or rice alone. Anti-melanogenic effect of RR was done by using melan-a mouse melanocytes. The depigmenting efficacy was then observed following topical application of the RR to UVB-stimulated hyperpigmented dorsal skin of guinea pigs. Treatment with RR extract resulted a $21.4{\pm}0.7%$ decrease in tyrosinase expression at melan-a cells. Colorimetric analysis showed a significantly lower depigmenting value by day 9 following treatment with RR in UVB-irradiated guinea pigs the dorsal skin (p<0.01), indicating that RR produced a depigmentation effect. By staining with Fontana-Masson stain, we found that the RR-treated group had more effect histopathologically in epidermal melanin production than resveratrol or rice alone-treated group. RR was associated with reduction in the levels of microphthalmia-associated transcription factor (MITF), and downregulation of tyrosinase and tyrosinase-related protein (TRP-2) expression, leading to inhibit epidermal melanin production by western blot analysis. This study suggests that the resveratrol-enriched rice may be a promising candidate in regulating skin pigmentation with UVB exposure.

Implications of Sex Hormone Receptor Gene Expression in the Predominance of Hepatocellular Carcinoma in Males: Role of Natural Products

  • Ahmed, Hanaa H;Shousha, Wafaa Gh;Shalby, Aziza B;El-Mezayen, Hatem A;Ismaiel, Nora N;Mahmoud, Nadia S
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.12
    • /
    • pp.4949-4954
    • /
    • 2015
  • The present study was planned to investigate the role of sex hormone receptor gene expression in the pathogenesis of hepatocellular carcinoma (HCC). Adult male Wistar rats were divided into seven groups. Group (1) was negative control. Groups (2), (5), (6), and (7) were orally administered with N-nitrosodiethylamine for the induction of HCC, then group (2) was left untreated, group (5) was orally treated with curcumin, group (6) was orally treated with carvacrol, and group (7) was intraperitoneally injected with doxorubicin, whereas groups (3) and (4) were orally administered only curcumin and carvacrol, respectively. The HCC group showed significant upregulation in the androgen receptor (AR) and the estrogen receptor-alpha ($ER{\alpha}$) gene expression levels in the liver tissue. On the contrary, HCC groups treated with either curcumin or carvacrol showed significant downregulation in AR and $ER{\alpha}$ gene expression levels in the liver tissue. In conclusion, the obtained data highlight that both AR and $ER{\alpha}$ but not estrogen receptor-beta ($ER{\beta}$) gene expression may contribute to the male prevalence of HCC induced in male rats. Interestingly, both curcumin and carvacrol were found to have a promising potency in alleviating the male predominating HCC.

MSP58 Knockdown Inhibits the Proliferation of Esophageal Squamous Cell Carcinoma in Vitro and in Vivo

  • Xu, Chun-Sheng;Zheng, Jian-Yong;Zhang, Hai-Long;Zhao, Hua-Dong;Zhang, Jing;Wu, Guo-Qiang;Wu, Lin;Wang, Qing;Wang, Wei-Zhong;Zhang, Jian
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.7
    • /
    • pp.3233-3238
    • /
    • 2012
  • Esophageal carcinoma (EC) is one of the most aggressive cancers with a poor prognosis. Understanding the molecular mechanisms underlying esophageal cancer progression is a high priority for improved EC diagnosis and prognosis. Recently, MSP58 was shown to behave as an oncogene in colorectal carcinomas and gliomas. However, little is known about its function in esophageal carcinomas. We therefore examined the effects of MSP58 knockdown on the growth of esophageal squamous cell carcinoma (ESCC) cells in vitro and in vivo in order to gain a better understanding of its potential as a tumor therapeutic target. We employed lentiviral-mediated small hairpin RNA (shRNA) to knock down the expression of MSP58 in the ESCC cell lines Eca-109 and EC9706 and demonstrated inhibition of ESCC cell proliferation and colony formation in vitro. Furthermore, flow cytometry and western blot analyses revealed that MSP58 depletion induced cell cycle arrest by regulating the expression of P21, CDK4 and cyclin D1. Notably, the downregulation of MSP58 significantly inhibited the growth of ESCC xenografts in nude mice. Our results suggest that MSP58 may play an important role in ESCC progression.

Emodin Inhibits Breast Cancer Cell Proliferation through the ERα-MAPK/Akt-Cyclin D1/Bcl-2 Signaling Pathway

  • Sui, Jia-Qi;Xie, Kun-Peng;Zou, Wei;Xie, Ming-Jie
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.15
    • /
    • pp.6247-6251
    • /
    • 2014
  • Background: The aim of the present study was to investigate the involvement of emodin on the growth of human breast cancer MCF-7 and MDA-MB-231 cells and the estrogen (E2) signal pathway in vitro. Materials and Methods: MTT assays were used to detect the effects of emodin on E2 induced proliferation of MCF-7 and MDA-MB-231 cells. Flow cytometry (FCM) was applied to determine the effect of emodin on E2-induced apoptosis of MCF-7 cells. Western blotting allowed detection of the effects of emodin on the expression of estrogen receptor ${\alpha}$, cyclin D1 and B-cell lymphoma-2 (Bcl-2), mitogen-activated protein kinases (MAPK) and phosphatidylinostiol 3-kinases (PI3K). Luciferase assays were emplyed to assess transcriptional activity of $ER{\alpha}$. Results: Emodin could inhibit E2-induced MCF-7 cell proliferation and anti-apoptosis effects, and arrest the cell cycle in G0/G1 phase, further blocking the effect of E2 on expression and transcriptional activity of $ER{\alpha}$. Moreover, Emodin influenced the ER ${\alpha}$ genomic pathway via downregulation of cyclin D1 and Bcl-2 protein expression, and influenced the non-genomic pathway via decreased PI3K/Akt protein expression. Conclusions: These findings indicate that emodin exerts inhibitory effects on MCF-7 cell proliferation via inhibiting both non-genomic and genomic pathways.

Downregulation of Cdk1 and CyclinB1 Expression Contributes to Oridonin-induced Cell Cycle Arrest at G2/M Phase and Growth Inhibition in SGC-7901 Gastric Cancer Cells

  • Gao, Shi-Yong;Li, Jun;Qu, Xiao-Ying;Zhu, Nan;Ji, Yu-Bin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.15
    • /
    • pp.6437-6441
    • /
    • 2014
  • Background: Oridonin isolated from Rabdosia rubescens, a plant used to treat cancer in Chinese folk medicine, is one of the most important antitumor active ingredients. Previous studies have shown that oridonin has antitumor activities in vivo and in vitro, but little is known about cell cycle effects of oridonin in gastric cancer. Materials and Methods: MTT assay was adopted to detect the proliferation inhibition of SGC-7901 cells, the cell cycle was assessed by flow cytometry and protein expression by Western blotting. Results: Oridonin could inhibit SGC-7901 cell proliferation, the $IC_{50}$ being $15.6{\mu}M$, and blocked SGC-7901 cell cycling in the $G_2/M$ phase. The agent also decreased the protein expression of cyclinB1 and CDK1. Conclusions: Oridonin may inhibit SGC-7901 growth and block the cells in the $G_2/M$ phase by decreasing Cdk1 and cyclinB1 proteins.

Expression and Effects of JMJD2A Histone Demethylase in Endometrial Carcinoma

  • Wang, Hong-Li;Liu, Mei-Mei;Ma, Xin;Fang, Lei;Zhang, Zong-Feng;Song, Tie-Fang;Gao, Jia-Yin;Kuang, Ye;Jiang, Jing;Li, Lin;Wang, Yang-Yang;Li, Pei-Ling
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.7
    • /
    • pp.3051-3056
    • /
    • 2014
  • Previous studies have demonstrated that JMJD2A is a potential oncogene and is overexpressed in human tumors. However, its role in the endometrial carcinoma remains largely unknown. In this study, we discovered that JMJD2A was overexpressed in endometrial carcinoma, using immunohistochemistry, quantitative realtime polymerase chain reaction, and western blotting. Downregulation of JMJD2A led to reduced endometrial carcinoma RL95-2 and ISK cell proliferation, invasion and metastasis as asessed with cell counting kit-8, cell migration and invasive assays. Collectively, our results support that JMJD2A is a promoter of endometrial carcinoma cell proliferation and survival, and is a potential novel drug target.