• Title/Summary/Keyword: downregulation

검색결과 535건 처리시간 0.027초

Exosome-mediated lnc-ABCA12-3 promotes proliferation and glycolysis but inhibits apoptosis by regulating the toll-like receptor 4/nuclear factor kappa-B signaling pathway in esophageal squamous cell carcinoma

  • Junliang Ma;Yijun Luo;Yingjie Liu;Cheng Chen;Anping Chen;Lubiao Liang;Wenxiang Wang;Yongxiang Song
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제27권1호
    • /
    • pp.61-73
    • /
    • 2023
  • Esophageal squamous cell carcinoma (ESCC) is a kind of malignant tumor with high incidence and mortality in the digestive system. The aim of this study is to explore the function of lnc-ABCA12-3 in the development of ESCC and its unique mechanisms. RT-PCR was applied to detect gene transcription levels in tissues or cell lines like TE-1, EC9706, and HEEC cells. Western blot was conducted to identify protein expression levels of mitochondrial apoptosis and toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB) signaling pathway. CCK-8 and EdU assays were carried out to measure cell proliferation, and cell apoptosis was examined by flow cytometry. ELISA was used for checking the changes in glycolysis-related indicators. Lnc-ABCA12-3 was highly expressed in ESCC tissues and cells, which preferred it to be a candidate target. The TE-1 and EC9706 cells proliferation and glycolysis were obviously inhibited with the downregulation of lnc-ABCA12-3, while apoptosis was promoted. TLR4 activator could largely reverse the apoptosis acceleration and relieved the proliferation and glycolysis suppression caused by lnc-ABCA12-3 downregulation. Moreover, the effect of lnc-ABCA12-3 on ESCC cells was actualized by activating the TLR4/NF-κB signaling pathway under the mediation of exosome. Taken together, the lnc-ABCA12-3 could promote the proliferation and glycolysis of ESCC, while repressing its apoptosis probably by regulating the TLR4/NF-κB signaling pathway under the mediation of exosome.

LINC00562 drives gastric cancer development by regulating miR-4636-AP1S3 axis

  • Lin Xu;Daiting Liu;Xun Wang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제27권3호
    • /
    • pp.197-208
    • /
    • 2023
  • Dysregulation of certain long non-coding RNAs may facilitate tumor initiation and progression. However, numerous carcinogenesis-related long noncoding RNAs have not been characterized. The goal of this study was to elucidate the role of LINC00562 in gastric cancer (GC). The expression of LINC00562 was analyzed using real-time quantitative PCR and Western blotting. The proliferative capacity of GC cells was determined using Cell Counting Kit-8 and colony-formation assays. The migration of GC cells were evaluated using wound-healing assays. The apoptosis of GC cells was assessed by measuring the expression levels of apoptosis-related proteins (Bax and Bcl-2). Xenograft models in nude mice were constructed for in vivo functional analysis of LINC00562. The binding relationship between miR-4636 and LINC00562 or adaptor protein complex 1 sigma 3 (AP1S3), obtained from public databases, was confirmed using dual-luciferase and RNA-binding protein immunoprecipitation experiments. LINC00562 was expressed in GC cells at high levels. Knockdown of LINC00562 repressed GC cell growth and migration, promoted apoptosis in vitro, and inhibited tumor growth in nude mouse models. LINC00562 directly targeted miR-4636, and miR-4636 depletion restored the GC cell behavior inhibited by LINC00562 absence. AP1S3, an oncogene, binds to miR-4636. MiR-4636 downregulation increased AP1S3 level, restoring GC cell malignant behaviors inhibited by AP1S3 downregulation. Thus, LINC00562 exerts carcinogenic effects on GC development by targeting miR-4636-mediated AP1S3 signaling.

Inducible Nitric Oxide Synthase Mediates the Triglyceride-induced Death of THP-1 Monocytes

  • Byung Chul Jung;Hyun-Kyung Kim;Jaewon Lim;Sung Hoon Kim;Yoon Suk Kim
    • 대한의생명과학회지
    • /
    • 제29권2호
    • /
    • pp.66-74
    • /
    • 2023
  • Triglyceride (TG) accumulation can cause monocytic death and suppress innate immunity. However, the signaling pathways involved in this phenomenon are not fully understood. This study aimed to examine whether inducible nitric oxide synthase (iNOS) is involved in the TG-induced death of THP-1 monocytes. Results showed that iNOS was upregulated in TG-treated THP-1 monocytes, and iNOS inhibition blocked TG-induced monocytic death. In addition, TG-induced poly (ADP-ribose) polymerase (PARP) cleavage and caspase-3 and -7 activation were suppressed by iNOS inhibition. Furthermore, the expression of X-linked inhibitor of apoptosis protein (XIAP) and survivin, which inhibit caspase-3 and -7, was reduced in TG-treated THP-1 monocytes, but iNOS inhibition recovered the TG-induced downregulation of XIAP and survivin expression. Considering that TG-induced monocytic death is triggered by caspase2 and -8, we investigated whether caspase-2 and -8 are linked to the TG-induced expression of iNOS in THP-1 monocytes. When the activities of caspase-2 and -8 were inhibited by specific inhibitors, the TG-induced upregulation of iNOS and downregulation of XIAP and survivin were restored in THP-1 monocytes. These results suggest that TG-induced monocytic death is mediated by the caspase-2/caspase-8/iNOS/XIAP and survivin/executioner caspase/PARP pathways.

Targeting cell surface glucose-regulated protein 94 in gastric cancer with an anti-GRP94 human monoclonal antibody

  • Hyun Jung Kim;Yea Bin Cho;Kyun Heo;Ji Woong Kim;Ha Gyeong Shin;Eun-bi Lee;Seong-Min Park;Jong Bae Park;Sukmook Lee
    • BMB Reports
    • /
    • 제57권4호
    • /
    • pp.188-193
    • /
    • 2024
  • Gastric cancer (GC), a leading cause of cancer-related mortality, remains a significant challenge despite recent therapeutic advancements. In this study, we explore the potential of targeting cell surface glucose-regulated protein 94 (GRP94) with antibodies as a novel therapeutic approach for GC. Our comprehensive analysis of GRP94 expression across various cancer types, with a specific focus on GC, revealed a substantial overexpression of GRP94, highlighting its potential as a promising target. Through in vitro and in vivo efficacy assessments, as well as toxicological analyses, we found that K101.1, a fully human monoclonal antibody designed to specifically target cell surface GRP94, effectively inhibits GC growth and angiogenesis without causing in vivo toxicity. Furthermore, our findings indicate that K101.1 promotes the internalization and concurrent downregulation of cell surface GRP94 on GC cells. In conclusion, our study suggests that cell surface GRP94 may be a potential therapeutic target in GC, and that antibody-based targeting of cell surface GRP94 may be an effective strategy for inhibiting GRP94-mediated GC growth and angiogenesis.

Role of TGF-β1/SMADs signalling pathway in resveratrol-induced reduction of extracellular matrix deposition by dexamethasone-treated human trabecular meshwork cells

  • Amy Suzana Abu Bakar;Norhafiza Razali;Renu Agarwal;Igor Iezhitsa;Maxim A. Perfilev;Pavel M. Vassiliev
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제28권4호
    • /
    • pp.345-359
    • /
    • 2024
  • Deposition of extracellular matrix (ECM) in the trabecular meshwork (TM) increases aqueous humour outflow resistance leading to elevation of intraocular pressure (IOP) in primary open-angle glaucoma, which remains the only modifiable risk factor. Resveratrol has been shown to counteract the steroid-induced increase in IOP and increase the TM expression of ECM proteolytic enzymes; however, its effects on the deposition of ECM components by TM and its associated pathways, such as TGF-β-SMAD signalling remain uncertain. This study, therefore, explored the effects of trans-resveratrol on the expression of ECM components, SMAD signalling molecules, plasminogen activator inhibitor-1 and tissue plasminogen activator in dexamethasone-treated human TM cells (HTMCs). We also studied the nature of molecular interaction of trans-resveratrol with SMAD4 domains using ensemble docking. Treatment of HTMCs with 12.5 µM trans-resveratrol downregulated the dexamethasone-induced increase in collagen, fibronectin and α-smooth muscle actin at gene and protein levels through downregulation of TGF-β1, SMAD4, and upregulation of SMAD7. Downregulation of TGF-β1 signalling by trans-resveratrol could be attributed to its effect on the transcriptional activity due to high affinity for the MH2 domain of SMAD4. These effects may contribute to resveratrol's IOP-lowering properties by reducing ECM deposition and enhancing aqueous humour outflow in the TM.

Proteome-wide Characterization and Pathophysiology Correlation in Non-ischemic Cardiomyopathies

  • Seonhwa Lee;Dong-Gi Jang;Yeon Ju Kyoung;Jeesoo Kim;Eui-Soon Kim;Ilseon Hwang;Jong-Chan Youn;Jong-Seo Kim;In-Cheol Kim
    • Korean Circulation Journal
    • /
    • 제54권8호
    • /
    • pp.468-481
    • /
    • 2024
  • Background and Objectives: Although the clinical consequences of advanced heart failure (HF) may be similar across different etiologies of cardiomyopathies, their proteomic expression may show substantial differences in relation to underlying pathophysiology. We aimed to identify myocardial tissue-based proteomic characteristics and the underlying molecular pathophysiology in non-ischemic cardiomyopathy with different etiologies. Methods: Comparative extensive proteomic analysis of the myocardium was performed in nine patients with biopsy-proven non-ischemic cardiomyopathies (3 dilated cardiomyopathy [DCM], 2 hypertrophic cardiomyopathy [HCM], and 4 myocarditis) as well as five controls using tandem mass tags combined with liquid chromatography-mass spectrometry. Differential protein expression analysis, Gene Ontology (GO) analysis, and Ingenuity Pathway Analysis (IPA) were performed to identify proteomic differences and molecular mechanisms in each cardiomyopathy type compared to the control. Proteomic characteristics were further evaluated in accordance with clinical and pathological findings. Results: The principal component analysis score plot showed that the controls, DCM, and HCM clustered well. However, myocarditis samples exhibited scattered distribution. IPA revealed the downregulation of oxidative phosphorylation and upregulation of the sirtuin signaling pathway in both DCM and HCM. Various inflammatory pathways were upregulated in myocarditis with the downregulation of Rho GDP dissociation inhibitors. The molecular pathophysiology identified by extensive proteomic analysis represented the clinical and pathological properties of each cardiomyopathy with abundant proteomes. Conclusions: Different etiologies of non-ischemic cardiomyopathies in advanced HF exhibit distinct proteomic expression despite shared pathologic findings. The benefit of tailored management strategies considering the different proteomic expressions in non-ischemic advanced HF requires further investigation.

Strongylocentrotus intermedius Extract Suppresses Adiposity by Inhibiting Adipogenesis and Promoting Adipocyte Browning via AMPK Activation in 3T3-L1 Cells

  • Lakshi A. Dayarathne;Jasmadi;Seok-Chun Ko;Mi-Jin Yim;Jeong Min Lee;Ji-Yul Kim;Gun-Woo Oh;Dae-Sung Lee;Won-Kyo Jung;Sei-Jung Lee;Jae-Young Je
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권8호
    • /
    • pp.1688-1697
    • /
    • 2024
  • The current study aimed to determine whether Strongylocentrotus intermedius (S. intermedius) extract (SIE) exerts anti-obesity potentials employing 3T3-L1 cells as in vitro model. Herein we reported that treatment of SIE for 6 days reduced lipid accretion and triglyceride content whereas it increased the release of free glycerol. The inhibited lipid accumulation and induced lipolysis were evidenced by the downregulation of lipogenesis proteins, such as fatty acid synthase and lipoprotein lipase, and the upregulation of hormone-sensitive lipase expression. Furthermore, the downregulation of adipogenic transcription factors, including peroxisome proliferator-activated receptor gamma, CCAAT/enhancer-binding protein α, and sterol regulatory element-binding protein 1, highlights that reduced lipid accumulation is supported by lowering adipocyte differentiation. Additionally, treatment activates brown adipocyte phenotype in 3T3-L1 cells by inducing expression of brown adipose tissue-specific proteins, such as uncoupling protein 1 and peroxisome proliferator-activated receptor-γ coactivator 1α. Moreover, SIE induced the phosphorylation of AMP-activated protein kinase (AMPK). The pharmacological approach using AMPK inhibitor revealed that the restraining effect of SIE on adipogenesis and promotion of adipocyte browning were blocked. In GC-MS analysis, SIE was mainly composed of cholest-5-en-3-ol (36.71%) along with saturated and unsaturated fatty acids which have favorable anti-obesity potentials. These results reveal that SIE has the possibility as a lipid-lowering agent for the intervention of obesity.

Effects of Prenatal and Neonatal Exposure to Bisphenol A on the Development of the Central Nervous System

  • Mizuo, Keisuke;Narita, Minoru;Miyagawa, Kazuya;Suzuki, Tsutomu
    • Biomolecules & Therapeutics
    • /
    • 제18권2호
    • /
    • pp.125-134
    • /
    • 2010
  • Bisphenol A (BPA) is one of the most common endocrine disrupters. In the last decade, the number of studies concerning the effects of chronic treatment with BPA on the development of the central nervous system (CNS) has increased. However, little is known about the effects of chronic exposure to BPA on higher brain functions such as memory or psychomotor functions. Here, we report our following findings: (1) Prenatal and neonatal exposure to BPA enhances psychostimulant-induced rewarding effects, results in the up- or downregulation of dopamine receptors, causes memory impairment, and decreases choline acetyltransferase (ChAT) activity. (2) BPA activates astrocytes in vivo and in vitro. These findings suggest that prenatal and neonatal exposure to BPA affects the development of the CNS.

A potential role for fatty acid biosynthesis genes during molting and cuticle formation in Caenorhabditis elegans

  • Li, Yingxiu;Paik, Young-Ki
    • BMB Reports
    • /
    • 제44권4호
    • /
    • pp.285-290
    • /
    • 2011
  • Caenorhabditis elegans undergoes a developmental molting process that involves a coordinated interplay among diverse intracellular pathways. Here, we investigated the functions of two fatty acid biosynthesis genes; pod-2, encoding acetyl-CoA carboxylase, and fasn-1, encoding fatty acid synthase, in the C. elegans molting process. Although both the pod-2 and fasn-1 genes were expressed at constant levels throughout C. elegans development, knockdown of the proteins encoded by these genes using RNA interference produced severe defects in triglyceride production, molting, and reproduction that were coupled to suppression of NAS-37, a metalloprotease. An assessment of the structure and integrity of the cuticle using a COL-19::GFP marker and Hoechst 33258 staining showed that downregulation of either pod-2 or fasn-1 impaired cuticle formation and disrupted the integrity of the cuticle and the hypodermal membrane.

Heptelidic Acid, a Sesquiterpene Lactone, Inhibits Etoposide-Induced Apoptosis in Human Leukemia U937 Cells

  • Kim, Jin-Hee;Lee, Choong-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권8호
    • /
    • pp.787-791
    • /
    • 2009
  • In the course of screening for substances that inhibit etoposide (10 ${\mu}g$/ml)-induced apoptosis in human leukemia U937 cells, fungal strain F000120, which exhibits potent inhibitory activity, was selected. The active compound was purified from an ethyl acetate extract of the microorganism by Sep-pak $C_{18}$ column chromatography and HPLC, and was identified as heptelidic acid (koningic acid) by spectroscopic methods. This compound inhibited caspase-3 induction in U937 cells with an $IC_{50}$ value of 40 ${\mu}M$ after 8 h of etoposide treatment. Fluorescent dye staining with acridine orange and ethidium bromide showed that heptelidic acid inhibited apoptosis. Furthermore, it was found that DNA fragmentation and caspase-3 activation, the biological hallmarks of apoptosis, were inhibited by the compound in a dose-dependent manner, suggesting that heptelidic acid inhibits etoposide-induced apoptosis via downregulation of caspases.