• Title/Summary/Keyword: downlink beamforming transmitter

Search Result 10, Processing Time 0.028 seconds

Design of Downlink Beamforming Transmitter in OFDMA/ TDD system (OFDMA/TDD 시스템의 하향링크 빔형성 송신기 설계)

  • Park Hyeong-Sook;Park Youn-Ok;Kim Cheol-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.5A
    • /
    • pp.493-500
    • /
    • 2006
  • This paper presents the efficient structure and parameter optimization of downlink beamforming transmitter in OFDMA/TDD system. To design downlink beamforming transmitter for multiple transmit antennas, an efficient beamforming structure for multiple users and the choice of word-length of each block are critical in the aspect of its performance and hardware complexity. We propose an efficient beamforming scheme, which stores the weights of subcarriers into memory without user identification at the receiver of base station and calculates the weights for corresponding user in a subcarrier unit of IFFT input at high speed. Also, we obtain the word-length of main data path and other design parameters by fixed-point simulation analysis. The proposed architecture could reduce the memory size proportional to the maximum number of users per frame, and the processing time of an OFDM symbol at the receiver of base station without the need of additional processing time for calculating the weights at the transmitter.

On Mobility-Supporting Transmit Beamforming in MISO FDD Wireless Systems

  • Lee, Woo-Kwon;Sepko, Brian J.
    • Journal of Communications and Networks
    • /
    • v.10 no.3
    • /
    • pp.308-315
    • /
    • 2008
  • When operating in frequency-division duplex (FDD) mode, transmit beamforming in multiple-input single-output (MISO) wireless communication systems typically requires accurate knowledge of downlink channel state information (CSI) at the transmitter. In practical FDD systems, obtaining such downlink CSI at the transmitter is challenging, if not impractical. To circumvent such challenge and support user mobility, we present a new method for transmit beamforming based on simple beam-control commands (BCCs) in MISO FDD mobile systems. We then numerically evaluate the effects of BCC errors in terms of transmit power efficiency, system capacity, and outage probability.

Survey on Physical Layer Security in Downlink Networks

  • Abbas, Mohammed Adil;Hong, Jun-Pyo
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.1
    • /
    • pp.14-20
    • /
    • 2017
  • In this paper, we discuss physical layer security techniques in downlink networks, including eavesdroppers. The main objective of using physical layer security is delivering a perfectly secure message from a transmitter to an intended receiver in the presence of passive or active eavesdroppers who are trying to wiretap the information or disturb the network stability. In downlink networks, based on the random feature of channels to terminals, opportunistic user scheduling can be exploited as an additional tool for enhancing physical layer security. We introduce user scheduling strategies and discuss the corresponding performances according to different levels of channel state information (CSI) at the base station (BS). We show that the availability of CSI of eavesdroppers significantly affects not only the beamforming strategy but also the user scheduling. Eventually, we provide intuitive information on the effect of CSI on the secrecy performance by considering three scenarios: perfect, imperfect, and absence of eavesdropper's CSI at the BS.

Beamforming for Downlink Multiuser MIMO Time-Varying Channels Based on Generalized Eigenvector Perturbation

  • Yu, Heejung;Lee, Sok-Kyu
    • ETRI Journal
    • /
    • v.34 no.6
    • /
    • pp.869-878
    • /
    • 2012
  • A beam design method based on signal-to-leakage-plus-noise ratio (SLNR) has been recently proposed as an effective scheme for multiuser multiple-input multiple-output downlink channels. It is shown that its solution, which maximizes the SLNR at a transmitter, can be simply obtained by the generalized eigenvectors corresponding to the dominant generalized eigenvalues of a pair of covariance matrices of a desired signal and interference leakage plus noise. Under time-varying channels, however, generalized eigendecomposition is required at each time step to design the optimal beam, and its level of complexity is too high to implement in practical systems. To overcome this problem, a predictive beam design method updating the beams according to channel variation is proposed. To this end, the perturbed generalized eigenvectors, which can be obtained by a perturbation theory without any iteration, are used. The performance of the method in terms of SLNR is analyzed and verified using numerical results.

The OFDMA/TDD System based on Transmit and Receive Beamforming Utilizing the Preamble for Receive Beamforming (수신 빔형성 프리앰블을 이용한 송수신 빔형성 기반 OFDMA/TDD 시스템)

  • Heo, Joo;Chang, Kyung-Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.9A
    • /
    • pp.749-754
    • /
    • 2005
  • It is well-known that mobile communication systems are usually limited in their performance and capacity by three major impairments, which are multipath fading, delay spread and co-channel interference (CCI). OFDMA (OFDM-FDMA) system can cope with the multipath fading and delay spread easily due to the beneficial properties of OmM technology. Though OFDMA scheme avoids intra-cell interference using the orthogonality among subcarriers, the scheme contains difficulty of reducing co-channel interference. Therefore, in this paper, adaptive antenna techniques are deployed into OFDMA/TDD system to minimize the co-channel interference induced by adjacent cells and to enhance the uplink performance. For the improvement of downlink performance, we apply TxAA (Transmit Adaptive Array), a kind of transmit diversity technique, utilizing preamble symbols for training antenna may into OFDMA/TDD transmitter side. Simulation results show that the uplink and downlink performance under multipath Rayleigh fading channel improved 9dB and 7dB each compared with the case of single antenna system at target BER $10^{-3}$ .

Spatial spectrum approach for pilot spoofing attack detection in MIMO systems

  • Ning, Lina;Li, Bin;Wang, Xiang;Liu, Xiaoming;Zhao, Chenglin
    • ETRI Journal
    • /
    • v.43 no.5
    • /
    • pp.941-949
    • /
    • 2021
  • In this study, a spatial spectrum method is proposed to cope with the pilot spoofing attack (PSA) problem by exploiting the of uplink-downlink channel reciprocity in time-division-duplex multiple-input multiple-output systems. First, the spoofing attack in the uplink stage is detected by a threshold derived from the predefined false alarm based on the estimated spatial spectrum. When the PSA occurs, the transmitter (That is Alice) can detect either one or two spatial spectrum peaks. Then, the legitimate user (That is Bob) and Eve are recognized in the downlink stage via the channel reciprocity property based on the difference between the spatial spectra if PSA occurs. This way, the presence of Eve and the direction of arrival of Eve and Bob can be identified at the transmitter end. Because noise is suppressed by a spatial spectrum, the detection performance is reliable even for low signal-noise ratios and a short training length. Consequently, Bob can use beamforming to transmit secure information during the data transmission stage. Theoretical analysis and numerical simulations are performed to evaluate the performance of the proposed scheme compared with conventional methods.

New Beamforming Schemes with Optimum Receive Combining for Multiuser MIMO Downlink Channels (다중사용자 다중입출력 하향링크 시스템을 위한 최적 수신 결합을 이용한 새로운 빔 형성 기법)

  • Lee, Sang-Rim;Park, Seok-Hwan;Moon, Sung-Hyun;Lee, In-Kyu
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.8
    • /
    • pp.15-26
    • /
    • 2011
  • In this paper, we present a new beamforming scheme for a downlink of multiuser multiple-input multipleoutput (MIMO) communication systems. Recently, a block-diagonalization (BD) algorithm has been proposed for the multiuser MIMO downlink where both a base station and each user have multiple antennas. However, the BD algorithm is not efficient when the number of supported streams per user is smaller than that of receive antennas. Since the BD method utilizes the space based on the channel matrix without considering the receive combining, the degree of freedom for beamforming cannot be fully exploited at the transmitter. In this paper, we optimize the receive beamforming vector under a zero forcing (ZF) constraint, where all inter-user interference is driven to zero. We propose an efficient algorithm to find the optimum receive vector by an iterative procedure. The proposed algorithm requires two phase values feedforward information for the receive combining vector. Also, we present another algorithm which needs only one phase value by using a decomposition of the complex general unitary matrix. Simulation results show that the proposed beamforming scheme outperforms the conventional BD algorithm in terms of error probability and obtains the diversity enhancement by utilizing the degree of freedom at the base station.

Performance Improvement of Downlink Real-Time Traffic Transmission Using MIMO-OFDMA Systems Based on Beamforming (Beamforming 기반 MIMO-OFDMA 시스템을 이용한 하향링크 실시간 트래픽 전송 성능 개선)

  • Yang Suck-Chel;Park Dae-Jin;Shin Yo-An
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.3 s.345
    • /
    • pp.1-9
    • /
    • 2006
  • In this paper, we propose a MIMO-OFDMA (Multi Input Multi Output-Orthogonal Frequency Division Multiple Access) system based on beamforming for performance improvement of downlink real-time traffic transmission in harsh channel conditions with low CIR (Carrier-to-Interference Ratio). In the proposed system, we first consider the M-GTA-SBA (Modified-Grouped Transmit Antenna-Simple Bit Allocation) using effective CSI (Channel State Information) calculation procedure based on spatial resource grouping, which is adequate for the combination of MRT (Maximum Ratio Transmission) in the transmitter and MRC (Maximum Ratio Combining) in the receiver. In addition, to reduce feedback information for the beamforming, we also apply QEGT (Quantized Equal Gain Transmission) based on quantization of amplitudes and phases of beam weights. Furthermore, considering multi-user environments, we propose the P-SRA (Proposed-Simple Resource Allocation) algorithm for fair and efficient resource allocation. Simulation results reveal that the proposed MIMO-OFDMA system achieves significant improvement of spectral efficiency in low CRI region as compared to a typical open-loop MIMO-OFDMA system using pseudo-orthogonal space time block code and H-ARQ IR (Hybrid-Automatic Repeat Request Incremental Redundancy).

Hybrid Scheduling in Millimeter Wave Full-Duplex Systems (밀리미터파 전 이중 시스템에서의 혼성 스케줄링)

  • Mai, Vien V.;Kim, Juyeop;Choi, Sang Won;Shin, Won-Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.1
    • /
    • pp.52-57
    • /
    • 2016
  • We introduce a hybrid scheduling in a multi-path poor scattering full-duplex (FD) system, which consists of one multi-antenna FD base station and a large number of single-antenna half-duplex mobile stations. Our hybrid scheduling utilizes partial channel state information at the transmitter. In particular, unlike the conventional scheduling method using opportunistic transmission for both uplink and downlink, the proposed scheme combines a random transmit beamforming for downlink and a zero forcing beamforming for uplink. As our main result, via computer simulations, it is shown that the proposed scheme has a superior sum-rate performance than that of the conventional scheduling method beyond a certain signal-to-noise ratio regime.

Downlink Space Division Multiple Access with Dynamic Slot Allocation for Multi-User MIMO Systems (복수 사용자 MIMO 시스템을 위한 동적 슬롯 할당 하향링크 공간분할 다중접속 기술)

  • 임민중
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.10
    • /
    • pp.61-67
    • /
    • 2004
  • The next generation cellular wireless communication systems require high data rate transmissions and large system capacities. In order to meet these requirements, multiple antennas can be used at the base and mobile stations, forming MIMO(Multiple Input Multiple Output) channels. This paper proposes a MIMO SDMA(Space Division Multiple Access) technique with dynamic slot allocation which allows the transmitter to efficiently transmit parallel data streams to each of multiple receivers. The proposed technique can increase system capacities significantly by transmitting a larger number of data streams than conventional MIMO techniques while minimizing the performance degradation due to the beamforming dimension reduction.