• Title/Summary/Keyword: double-tee girder

Search Result 3, Processing Time 0.02 seconds

Field distribution factors and dynamic load allowance for simply supported double-tee girder bridges

  • Kidd, Brian;Rimal, Sandip;Seo, Junwon;Tazarv, Mostafa;Wehbe, Nadim
    • Structural Engineering and Mechanics
    • /
    • v.82 no.1
    • /
    • pp.69-79
    • /
    • 2022
  • This paper discusses the field testing of two single-span double-tee girder (DTG) bridges in South Dakota to determine live load distribution factors (LLDFs) and the dynamic load allowance (IM). One bridge had seven girders and another had eight girders. The longitudinal girder-to-girder joints of both bridges were deteriorated in a way that water could penetrate and the joint steel members were corroded. A truck traveled across each of the two bridges at five transverse paths. The paths were tested twice with a crawl speed load test and twice with a dynamic load. The LLDFs and IM were determined using strain data measured during the field tests. These results were compared with those determined according to the AASHTO Standard and the AASHTO LRFD specifications. Nearly all the measured LLDFs were below the AASHTO LRFD design LLDFs, with the exception of two instances: 1) An exterior DTG on the seven-girder bridge and 2) An interior DTG on the eight-girder bridge. The LLDFs specified in the AASHTO Standard were conservative compared with the measured LLDFs. It was also found that both AASHTO LRFD and AASHTO Standard specifications were conservative when estimating IM, compared to the field test results for both bridges.

Parametric study on precast prestressed concrete double-tee girder for rural bridges

  • Nguyen, Dinh Hung;Vu, Hong Nghiep;Nguyen, Thac Quang
    • Computers and Concrete
    • /
    • v.29 no.3
    • /
    • pp.161-168
    • /
    • 2022
  • Bridges using double-tee (DT) girders from 12 m to 15 m are one of the good choices to improve accessibility in rural areas of the Mekong River Delta. In this study, nonlinear finite element method (FEM) analysis was conducted with different constitutive laws of materials. The FEM analysis results were compared to experimental results to confirm the applicability of the constitutive laws of materials for DT girders. A parametric study through FEM analysis was then conducted to investigate the effect of span lengths, top flange depths, and a number of prestressing tendons on the capacity of DT girders in order that propose DT girders for rural bridges. Parametric results showed that the top flange depth of a DT girder for rural bridges could be 120 mm. The DT girder with a span length of 12 m or 13 m could be used 16 tendons, while the DT girder with a span length of 14 m or 15 m could be set up with 20 tendons. The prestressed concrete DT girders based on FEM results can be suggested for the construction of rural bridges.

Application of Concept of IPC Girder to Building Structures (IPC Girder 개념의 건축물에의 적용)

  • 이차돈;한만엽;박병엽
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.841-846
    • /
    • 2001
  • The applicability of the concept of IPC(Incrementally Prestressed Concrete) girder which effectively reduces the depth of the conventional prestressed girders by introducing prestress in two different stages is theoretically reviewed in this research. Expressions on top and bottom stresses resulting from different loading stages are presented. Beneficial effects of IPC girder compared with those traditional prestressed girders are evaluated by investigating the girder depth for the same span or girder span for the same girder depth. Parking structures and ware house structures which need relatively longer span and are subject to large live loads are considered in comparison. It was found that the single or double tee slab designed by IPC concept could be built upto 50% longer in its span and upto 45% less in its depth compared to those of traditionally prestressed single or double tee slabs. In addition, the amount of prestressing tendons could be reduced.

  • PDF