• Title/Summary/Keyword: double-dipole quasi-Yagi antenna

Search Result 7, Processing Time 0.018 seconds

Compact Dual-band Double Dipole Quasi-Yagi Antenna with V-shaped Ground Plane (V-모양 접지면을 가지는 소형 이중 대역 이중 다이폴 준-야기 안테나)

  • Yeo, Junho;Lee, Jong-Ig
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.5
    • /
    • pp.436-441
    • /
    • 2018
  • In this paper, a design method for a compact double dipole quasi-Yagi antenna with a V-shaped ground plane operating in dual bands including 2.45 GHz and 5 GHz wireless LAN frequency bands is studied. First, a quasi-Yagi antenna operating in the 2.45 GHz band is designed, and a V-shaped ground plane is used instead of a conventional strip ground plane to reduce the length of the antenna. A second dipole is connected to the dipole driver of the quasi-Yagi antenna for 2.45 GHz band and a director is appended for 5 GHz band operation. A prototype of the proposed dual-band antenna operating at 2.45 GHz WLAN band and 4.57-7.11 GHz band is fabricated on an FR4 substrate with a dimension of 40 mm by 55 mm. Fabricated antenna shows frequency bands of 2.33-2.75 GHz and 4.38-7.5 GHz for a voltage standing wave ratio less than 2. Measured gain remains more than 4 dBi in both bands.

Gain Enhancement of Double Dipole Quasi-Yagi Antenna Using Meanderline Array Structure (미앤더라인 배열 구조를 이용한 이중 다이폴 준-야기 안테나의 이득 향상)

  • Junho Yeo;Jong-Ig Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.4
    • /
    • pp.447-452
    • /
    • 2023
  • In this paper, gain enhancement of a double dipole quasi-Yagi antenna using a meanderline array structure was studied. A 4×1 meanderline array structure consisting of a meanderline conductor- shaped unit cell is located above the second dipole of the double dipole quasi-Yagi antenna. It was designed to have gain over 7 dBi in the frequency range between 1.70 and 2.70 GHz in order to compare the performance with the case using a conventional strip director. As a result of comparison, the average gain of the double dipole quasi-yagi antenna with the proposed meander line array structure was larger compared to the case with the conventional strip director. A double dipole quasi-Yagi antenna using the proposed meanderline array structure was fabricated on an FR4 substrate and its characteristics were compared with the simulation results. Experiment results show that the frequency band for a VSWR less than 2 was 1.55-2.82 GHz, and the frequency band for gain over 7 dBi was measured to be 1.54-2.83 GHz. The frequency bandwidth with gain over 7 dBi increased, and average gain also slightly increased, compared to the conventional case using a strip director.

Bandwidth Enhancement of Double-Dipole Quasi-Yagi Antenna Using Modified Microstrip-to-Coplanar Strip line Balun (변형된 마이크로스트립-동일면 스트립 선로 밸런을 이용한 이중 다이폴 준-야기 안테나의 대역폭 향상)

  • Yeo, Junho;Lee, Jong-Ig;Baek, Woon-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.3
    • /
    • pp.457-463
    • /
    • 2016
  • In this paper, a method of enhancing the bandwidth of a double-dipole quasi-Yagi antenna (DDQYA) using a modified integrated balun is presented. The modified integrated balun consists of a microstrip (MS) line inserted along the center of a coplanar strip (CPS) line and the end of the MS line is connected to the CPS line through a shorting pin at the feed point. The geometry of the modified integrated balun is adjusted to improve the bandwidth of the DDQYA. In addition, the performance of the proposed balun in a back-to-back configuration is compared with a conventional balun. The proposed antenna with the optimized modified integrated balun is fabricated on an FR4 substrate, and the experiment results show that the antenna has a frequency band of 1.56-3.04 GHz(64.4%) for a VSWR < 2, which shows enhanced bandwidth compared to the DDQYA with the conventional balun.

Design of Double Dipole Quasi-Yagi Antenna with enhanced bandwidth and gain (대역폭과 이득이 향상된 이중 다이폴 준-야기 안테나 설계)

  • Yeo, Junho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.2
    • /
    • pp.252-258
    • /
    • 2017
  • In this paper, the bandwidth and gain enhancement of a double-dipole quasi-Yagi antenna (DDQYA) using a modified balun and two directors is studied. The proposed DDQYA consists of two strip dipoles with different lengths, a ground reflector, which are connected through a coplanar strip line, and two directors. The modified balun is used to increase the bandwidth, whereas two directors are appended to the DDQYA to enhance the gain in the middle and high frequency band. The effects of the length and width of the first director on the antenna performance are analyzed, and final design parameters to obtain a gain over 7 dBi at 1.60-2.90 GHz band are obtained. A prototype of the proposed DDQYA is fabricated on an FR4 substrate, and the experimental results show that the antenna has a frequency band of 1.57-3.00 GHz for a VSWR < 2, and measured gain ranges 7.1-7.8 dBi at 1.60-2.90 GHz band.

Wideband Double Dipole Quasi-Yagi Antenna Using a Microstrip-to-Slotline Transition Feed

  • Ta, Son Xuat;Park, Ikmo
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.1
    • /
    • pp.22-27
    • /
    • 2013
  • This paper describes a wideband double dipole quasi-Yagi antenna fed by a microstrip-to-slotline transition. The transition feed consists of a microstrip radial stub and a slot radial stub, each with the same angle of $90^{\circ}$ but with different radii, to achieve wideband impedance matching. Double dipoles with different lengths are utilized as primary radiation elements to enhance bandwidth and achieve stable radiation patterns. The proposed antenna has a measured bandwidth of 3.34~8.72 GHz for a -10 dB reflection coefficient and a flat gain of $6.9{\pm}0.6$ dBi across the bandwidth.

Design of a CPW-fed Double-Dipole Quasi-Yagi Antenna (CPW 급전 이중 다이폴 준-야기 안테나 설계)

  • Yeo, Junho;Lee, Jong-Ig
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.11
    • /
    • pp.1518-1523
    • /
    • 2018
  • A method for designing a DDQYA fed by a CPW is proposed in this paper. The proposed CPW-fed DDQYA consists of two series-connected strip dipoles, a ground reflector, and a strip-pair director. Instead of the conventional microstrip feed line in which the signal line is located on the substrate opposite to the antenna, a CPW is used because CPW is located on the same side with the antenna, and so the fabrication is easy. The strip-pair director is composed of two horizontally-separated strips, and it is added above the second dipole to enhance the gain in the high frequency region. A prototype of the proposed CPW-fed DDQYA is fabricated on an FR4 substrate. The fabricated antenna has a frequency band of 1.66-3.38 GHz(68.3%) for a voltage standing wave ratio < 2, and measured gain ranges 5.0-7.3 dBi over a frequency band of 1.60-2.90 GHz.

Design of Double-Dipole Quasi-Yagi Antenna with 7 dBi gain (7 dBi 이득을 가지는 이중 다이폴 준-야기 안테나 설계)

  • Yeo, Junho;Lee, Jong-Ig;Baek, Woon-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.2
    • /
    • pp.245-252
    • /
    • 2016
  • In this paper, the design of a double-dipole quasi-Yagi antenna (DDQYA) with a gain over 7 dBi at 1.70-2.70 GHz band is studied. The proposed DDQYA consists of two strip dipoles with different lengths and a ground reflector, which are connected trough a coplanar stripline. The length of the second dipole is adjusted to increase the gain in the low frequency band, whereas a rectangular patch director is appended to the DDQYA to enhance the gain in the middle and high frequency band. The effects of the length of the second dipole, and the length and width of the director on the antenna performance are analyzed, and final design parameters to obtain a gain over 7 dBi are obtained. A prototype of the proposed DDQYA is fabricated on an FR4 substrate, and the experimental results show that the antenna has a frequency band of 1.60-2.86 GHz for a VSWR < 2, and measured gain ranges 7.2-7.6 dBi at 1.70-2.70 GHz band.