• Title/Summary/Keyword: double-curvature

Search Result 104, Processing Time 0.027 seconds

Development of 3-Dimensional Polyimide-based Neural Probe with Improved Mechanical Stiffness and Double-side Recording Sites (증가된 기계적 강도 및 양방향 신호 검출이 가능한 3차원 폴리이미드 기반 뉴럴 프로브 개발)

  • Kim, Tae-Hyun;Lee, Kee-Keun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.11
    • /
    • pp.1998-2003
    • /
    • 2007
  • A flexible but implantable polyimide-based neural implant was fabricated for reliable and stable long-term monitoring of neural activities from brain. The developed neural implant provides 3-dimensional (3D) $3{\times}3$ structure, avoids any hand handling, and makes the insertion more efficient and reliable. Any film curvature caused by residual stress was not observed in the electrode. The 3D flexible polyimide electrode penetrated a dense gel whose stiffness is close to live brain tissue, because a ${\sim}1{\mu}m$ thick nickel was electroplated along the edge of the shank in order to improve the stiffness. The recording sites were positioned at both side of the shank to increase the probability of recording neural signals from a target volume of tissue. Impedance remained stable over 72 hours because of extremely low moisture uptake in the polyimide dielectric layers. At electrical recording test in vitro, the fabricated electrode showed excellent recording performance, suggesting that this electrode has the potential for great recording from neuron firing and long-term implant performance.

Anterior Cervical Discectomy and Fusion Using a Double Cylindrical Cage versus an Anterior Cervical Plating System with Iliac Crest Autografts for the Treatment of Cervical Degenerative Disc Disease

  • Kim, Seong Joon;Kim, Sang Don
    • Journal of Korean Neurosurgical Society
    • /
    • v.55 no.1
    • /
    • pp.12-17
    • /
    • 2014
  • Objective : Anterior cervical discectomy and fusion (ACDF) is often complicated by subsidence, pseudoarthrosis, kyphosis, and graft donor site morbidities. To decrease the occurrence of these complications, various types of cages have been developed. We designed this retrospective study to analyze and compare the efficacy and outcomes of ACDF using double cylindrical cages (DCC) (BK Medical, Seoul, Korea) versus an anterior cervical plating system with autogenous iliac crest grafts. Methods : Forty-eight patients were treated with autograft and plating (plate group), and 48 with DCC group from October 2007 to October 2011. We analyzed construct length, cervical lordotic curvarture, the thickness of the prevertebral soft tissue, segmental instability, and clinical outcomes. Results : There were no significant differences between the two groups with regard to the decrease in construct length or cervical lodortic curvature at the 3-, 6-, and 12-month follow-ups. The prevertebral soft tissue was thinner in the DCC group than the plate group immediately after surgery and at the 3-, 6-, and 12-month follow-ups. The difference in interspinous distance on flexion-extension was shorter in the plate group than the DCC group at the 3- and 6-month follow-ups. However, there was no significant difference in this distance between the two groups at the 12-month follow-up. Conclusion : A double cylindrical cage is a good alternative for fusion in patients with cervical degenerative diseases; the surgical method is relatively simple, allows good synostosis, has less associated prevertebral soft tissue swelling, and complications associated with autografting can be avoided.

Experimental evaluation of back-to-back anchored walls by double-plates anchors

  • Amir, Najafizadeh;AmirAli, Zad
    • Geomechanics and Engineering
    • /
    • v.31 no.6
    • /
    • pp.599-614
    • /
    • 2022
  • One of the methods of stabilizing retaining walls, embankments, and deep excavations is the implementation of plate anchors (like the Geolock wall anchor systems). Back-to-back Mechanically Stabilized Earth (BBMSE) walls are common stabilized earth structures that can be used for bridge ramps. But so far, the analysis of the interactive behavior of two back-to-back anchored walls (BBAW) by double-plates anchors (constructed closely from each other and subjected to the limited-breadth vertical loading) including interference of their failure and sliding surfaces has not been the subject of comprehensive studies. Indeed, in this compound system, the interaction of sliding wedges of these two back-to-back walls considering the shear failure wedge of the foundation, significantly impresses on the foundation bearing capacity, adjacent walls displacements and deformations, and their stability. In this study, the effect of horizontal distance between two walls (W), breadth of loading plate (B), and position of vertical loading was investigated experimentally. In addition, the comparison of using single and equivalent double-plate anchors was evaluated. The loading plate bearing capacity and displacements, and deformations of BBAW were measured and the results are presented. To evaluate the shape, form, and how the critical failure surfaces of the soil behind the walls and beneath the foundation intersect with one another, the Particle Image Velocimetry (PIV) technique was applied. The experimental tests results showed that in this composite system (two adjacent-loaded BBAW) the effective distance of walls is about W = 2.5*H (H: height of walls) and the foundation effective breadth is about B = H, concerning foundation bearing capacity, walls horizontal displacements and their deformations. For more amounts of W and B, the foundation and walls can be designed and analyzed individually. Besides, in this compound system, the foundation bearing capacity is an exponential function of the System Geometry Variable (SGV) whereas walls displacements are a quadratic function of it. Finally, as an important achievement, doubling the plates of anchors can facilitate using concrete walls, which have limitations in tolerating curvature.

Development of a Fitted Bodice Pattern Using a 3D Replica of Women's Upper Body (3D 레플리카를 이용한 여성용 밀착 상의의 패턴 전개 방법)

  • Lee, Hee-Ran;Hong, Kyung-Hi
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.29 no.7 s.144
    • /
    • pp.1008-1017
    • /
    • 2005
  • When we develop 2D pattern from replica of human body with small pieces, it is inevitable to have some replica pieces overlapped or departed. In this study, the optimized method of 2D pattern development from the 3D replica pieces was investigated using dress-form. Among six arrangement methods, anchoring two vertexes of a replica to neighboring vertexes of a next replica induces the optimized 2D pattern by evenly distributing stress across the 3D replica pieces. Anchoring neighboring vertexes resulted in automatic widening k overlapping (W & O) the interspaces among replicas of dress-form, thereby stress was distributed more evenly than any other method. W&O arrangement method was verified to be the best by examining the 3D space distribution images between body surface and twelve experimental garments.

A Study on the Stabilization Process of Tensegrity System using the Force Density Method (내력밀도법을 이용한 텐세그러티 구조물의 안정화 기법에 관한 연구)

  • Sur, Sam-Yeol;Koh, Kwang-Ung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.3 no.4 s.10
    • /
    • pp.77-84
    • /
    • 2003
  • Tensegrity systems are stable structures which are reticulated spatial structures composed of compressive straight members, struts and cables. But there are some difficulties concerning surface stability, surface formation and construction method. One of the ways to solve this problem reasonably is combination of tesile members and rigid members. This structure is a type of flexible strutural system which is unstable initially because the cable material has little initial rigidity. Therefore tensegrity structure need to be introduced to the Initial stress for the self-equilibrated system having stable state. The rigidification of tensegrity systems is related to selfstress states which can be achieved only when geometrical and mechanical requirements are simultaneously satisfied. In this paper, for the stabilization of tesnsegrity structure it is proposed the modified self-equilibrated equation and the range of the various geometrical parameter about unit system. And we generate the model of double layed single curvature arch using the new squew quadruplex unit system.

  • PDF

Complete collapse test of reinforced concrete columns

  • Abdullah, Abdullah;Takiguchi, Katsuki
    • Structural Engineering and Mechanics
    • /
    • v.12 no.2
    • /
    • pp.157-168
    • /
    • 2001
  • In this paper, experimental investigation into the behavior of reinforced concrete (RC) columns tested under large lateral displacement with four different types of loading arrangements is presented. Each loading arrangement has a different system for controlling the consistency of the loading condition. One of the loading arrangements used three units of link mechanism to control the parallelism of the top and bottom stub of column during testing, and the remaining employed eight hydraulic jacks for the same purpose. The loading systems condition used in this investigation were similar to the actual case in a moment-resisting frame where the tested column was displaced in a double curvature. Ten model column specimens, divided into four series were prepared. Two columns were tested monotonically until collapse, and unless failure took place at an earlier stage of loading, the remaining eight columns were tested under cyclic loading. Test results indicated that the proposed system to keep the top and bottom stubs parallel during testing performed well.

Bending performance of laminated sandwich shells in hyperbolic paraboloidal form

  • Alankaya, Veysel;Erdonmez, Cengiz
    • Steel and Composite Structures
    • /
    • v.25 no.3
    • /
    • pp.337-346
    • /
    • 2017
  • Sandwich shells made of composite materials are the main focus on recent literature parallel to the requirements of industry. They are commonly chosen for the modern engineering applications which require moderate strength to weight ratio without dependence on conventional manufacturing techniques. The investigations on hyperbolic paraboloidal formed sandwich composite shells are limited in the literature contrary to shells that have a number of studies, consisting of doubly curved surfaces, arbitrary boundaries and laminations. Because of the lack of contributive data in the literature, the aim of this study is to present the effects of curvature on hyperbolic paraboloidal formed, layered sandwich composite surfaces that have arbitrary boundary conditions. Analytical solution methodology for the analyses of stresses and deformations is based on Third Order Shear Deformation Theory (TSDT). Double Fourier series, which are specialized for boundary discontinuity, are used to solve highly coupled linear partial differential equations. Numerical solutions showing the effects of shell geometry are presented to provide benchmark results.

Development of Innovative Neutron Flux Mapping System (혁신적인 중성자 속 분포 측정 시스템의 개발)

  • 조병학;신창훈;변승현;박준영;양장범
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.60-63
    • /
    • 2004
  • An innovative in-core neutron flux mapping system has been developed and applied successfully for service in a commercial pressurized water reactor. With the benefit of double indexing path selector (Dip $s^{ⓡ}$) mechanism, the reliability of the detector drive system has been improved five times higher than that of conventional systems, and the problems caused by the serious friction generated between the detector cable and guide tubing has been solved completely because the Dip $s^{ⓡ}$ architecture allows the detector guide tubings to have larger curvature and shorter length in nature. The simple and fast maintenance is particularly emphasized in the detector drive system to secure minimum radiation exposure to the maintenance personnel by optimizing the number of components and providing easy access to the components. The programmable logic controller based digital controller with Window $s^{ⓡ}$ based operator s console provides fully automated and user friendly operation and maintenance support means.

  • PDF

Underwater explosion and its effects on nonlinear behavior of an arch dam

  • Moradi, Melika;Aghajanzadeh, Seyyed Meisam;Mirzabozorg, Hasan;Alimohammadi, Mahsa
    • Coupled systems mechanics
    • /
    • v.7 no.3
    • /
    • pp.333-351
    • /
    • 2018
  • In the present paper, the behavior of the Karaj double curvature arch dam is studied focusing on the effects of structural nonlinearity on the responses of the dam body when an underwater explosion occurred in the reservoir medium. The explosive sources are located at different distances from the dam and the effects of the cavitation and the initial shock wave of the explosion are considered. Different amount of TNT are considered. Two different linear and nonlinear behavior are assumed in the analysis and the dam body is assumed with and without contraction joints. Radial, tangential and vertical displacements of the dam crest are obtained. Moreover, maximum and minimum principal stress distributions are plotted. Based on the results, the dam body responses are sensitive to the insertion of joints and constitutive model considered for the dam body.

Investigation of cure cycle for co-cured metal/composite hybrid structures without fabricating thermal residual stress (동시경화 하이브리드 금속/복합재료 구조물의 제조 잔류 열응력 제거를 위한 경화사이클에 관한 연구)

  • Kim Hak Sung;Park Sang Wook;Lee Dai Gil
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.83-87
    • /
    • 2004
  • In this work, the cure cycle of co-cured metal/composite structure was investigated to decrease fabricating thermal residual stresses between the metal and the composite material. DSC (Differential scanning calorimetry) experiment and static lap shear test of co-cured aluminum/composite double lap joint as well as the curvature experiment of co-cured steel/composite strip were performed to investigate the effect of curing cycle on the thermal residual stress of co-cured hybrid structures. From the experiments, it was found that post curing method after abrupt cooling of co-cured aluminum/composite hybrid structure at certain point of degree of cure during curing process could eliminate fabricating the thermal residual stresses.

  • PDF