• Title/Summary/Keyword: double mutant

Search Result 129, Processing Time 0.021 seconds

Phenotypic and Genetic Effects of Dwarfing Genes on Plant Height and Some Agronomic Traits in Wheat

  • Moon Seok Kim;Jin Seok Yoon;Yong Weon Seo
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.276-276
    • /
    • 2022
  • Wheat is one of the most widely grown food crops worldwide. Extreme precipitation and wind disturbances increased due to the abnormal climate, which resulted in increased lodging. Introduction of dwarf genes in wheat significantly increased lodging resistance and productivity in wheat breeding. In this study, we performed the genotyping of dwarfing genes between 'Keumkang' and 'Komac 5' ('Keumkang' mutant). In addition, we investigated the relationship between plant height and several phenotypic characters using F2 segregation populations derived from crosses between the two varieties. There was no significant difference in phenotypic characters between the two varieties except for plant height. In the genotyping analysis using dwarfing genes, mutations of two dwarfing gene were found to be induced between the two varieties. The four genotypes of the F2 populations from a crossing between 'Keumkang' and 'Komac 5' were used to compare and evaluate the effects of two dwarfing genes. Plants with two single mutant dwarfing gene and double mutant dwarfing gene revealed reduced plant heights than control plants by 4.5%, 6.9%, and 33.2%, respectively. The phenotype analysis showed that double mutant dwarfing gene affected wheat stem growth as the length decreases from the second node, resulting in decreased plant height. However, there were no significant differences in the agronomic traits between mutant plants and control plant. These results may provide novel information about the effect of double mutant dwarfing gene on plant height, and may help improve lodging tolerance and wheat yield.

  • PDF

In Vivo Analysis of fadB Homologous Enzymes Involved in Biosynthesis of Polyhydroxyalkanoates in Recombinant Escherichia coli (재조합 대장균에서 fadB 유사효소의 Polyhydroxyalkanoates 합성에 미치는 역할의 규명)

  • 최종일;박시재;이상엽
    • KSBB Journal
    • /
    • v.19 no.4
    • /
    • pp.331-334
    • /
    • 2004
  • In vivo characterization of FadB homologous enzymes including PaaG, YdbU and YgfG for medium-chain-length (MCL) polyhydroxyalkanoate (PHA) biosynthesis was carried out in fadB mutant Escherichia coli. Previously, it was reported that amplification of FadB homologous enzymes such as PaaG and YdbU in fadB mutant E. coli resulted in enhanced biosynthesis of MCL-PHA by greater than two fold compared with control strain. In this study, we constructed paaG fadB double mutant E. coli WB114 and ydbU fadB double mutant E. coli WB115 to investigate the roles of PaaG and YdbU in biosynthesis of MCL-PHA. Inactivation of paaG and ydbU genes in fadB mutant E. coli harboring Pseudomonas sp. 61-3 phaC2 gene reduced the MCL-PHA production to 0.16 and 0.16 PHA g/L, respectively from 2 g/L of sodium decanoate, which are much lower than 0.43 PHA g/L obtained with fadB mutant E. coli WB101 harboring the phaC2 gene. Also, we identified new FadB homologous enzyme YgfG, and examined its roles by overexpression of ygfG and construction of ygfG fadB double mutant E. coli WB113.

Development and Characterization of Sporulation Mutants for Overexpression of Recombinant Protein of Bacillus subtilis (재조합 단백질 과발현을 위한 Bacillus snbtilis 포자형성 변이주의 개발 및 특성 분석)

  • 오민규;박승환김병기
    • KSBB Journal
    • /
    • v.9 no.1
    • /
    • pp.16-25
    • /
    • 1994
  • Sporulation mutants of Bacillus subtilis were developed for overproduction of heterologous proteins. The strains spoOJ spoIIG, and spoOJ spoIIG double mutant were constructed from two pretense-delfted mutant (DB104). The vector containing aprE gene was integrated in the chromosome of each strain, then the morphology of each strain was observed by TEM (trasmission electron microscopy). The morphology of spoOJ mutant and spoIIG mutant coincides with the description of the previous reports, respectively. The sporulating cells of spoOJ SpoIIG double mutation resemble spoIIG mutant more similarly, but with a little rougher cell wall membrane. The spoOJ mutation in B. subtilis gives negative effect on aprE activity with only a decreased sporulation frequency. On the contrary spoIIG mutation increases the aprE activity twice with an undetectable sporulation frequency. In the case of spoOJ and spolIG, i. e. double mutation, the effect of spoOJ on aprE activity seems to be relieved and the double mutant shows more or less the same aprE activity compared to spoIIG mutant.

  • PDF

Role of Dual Flagella in the Pathogenesis of Vibrio parahaemolyticus

  • Lee, Hwa-Gyu;Jeong, Byung-Gon;Park, Kwon-Sam
    • Fisheries and Aquatic Sciences
    • /
    • v.14 no.2
    • /
    • pp.73-78
    • /
    • 2011
  • Vibrio parahaemolyticus possesses two flagella systems: polar and lateral flagella for swimming in liquid and swarming on solid surfaces or in viscous environments. To elucidate the pathogenic role of these dual flagella systems, we constructed single- and double-deletion mutants of the lafA and flhAB flagellum genes and investigated their biofilm formation, cell adhesion, and colonization of the small intestine of suckling mice. The double-mutant strain was more impaired in biofilm formation than either of the single-mutant strains. In addition, the lafA, flhAB, and double-mutant strains showed 40%, 45%, and 60%, respectively, lower adherence to HeLa cells than the wild-type strain. Moreover, the lafA, flhAB, and double-mutant strains exhibited 49%, 5.6 and 6.7 times, respectively, lower colonization in a competition assay than the wild-type strain. These findings indicated that polar flagella were more important than lateral flagella for the pathogenesis of V. parahaemolyticus.

Crystallization and X-Ray Crystallographic Studies of Wild-Type and Mutant Tryptophan Synthase α-Subunits from Escherichia coli

  • Jeong, Mi Suk;Jang, Se Bok
    • Molecules and Cells
    • /
    • v.19 no.2
    • /
    • pp.219-222
    • /
    • 2005
  • The a-subunit of Escherichia coli tryptophan synthase (${\alpha}TS$), a component of the tryptophan synthase ${\alpha}_2{\beta}_2$ complex, is a monomeric 268-residues protein (Mr = 28,600). ${\alpha}TS$ by itself catalyzes the cleavage of indole-3-glycerol phosphate to glyceraldehyde-3-phosphate and indole, which is converted to tryptophan in tryptophan biosynthesis. Wild-type and P28L/Y173F double mutant ${\alpha}$-subunits were overexpressed in E. coli and crystallized at 298 K by the hanging-drop vapor-diffusion method. X-ray diffraction data were collected to $2.5{\AA}$ resolution from the wild-type crystals and to $1.8{\AA}$ from the crystals of the double mutant, since the latter produced better quality diffraction data. The wild-type crystals belonged to the monoclinic space group C2 ($a=155.64{\AA}$, $b=44.54{\AA}$, $c=71.53{\AA}$ and ${\beta}=96.39^{\circ}$) and the P28L/Y173F crystals to the monoclinic space group $P2_1$ ($a=71.09{\AA}$, b=52.70, $c=71.52{\AA}$ and ${\beta}=91.49^{\circ}$). The asymmetric unit of both structures contained two molecules of ${\alpha}TS$. Crystal volume per protein mass ($V_m$) and solvent content were $2.15{\AA}^3\;Da^{-1}$ and 42.95% for the wild-type and $2.34{\AA}^3\;Da^{-1}$ and 47.52% for the double mutant.

The Characteristics of I269S and I224S Double Mutant Horse Liver Alcohol Dehydrogenase (I269S와 I224S 이중변이 알코올 탈수소효소의 특성)

  • Ryu, Ji-Won;Lee, Kang-Man
    • YAKHAK HOEJI
    • /
    • v.41 no.6
    • /
    • pp.756-764
    • /
    • 1997
  • Ile-224 in I269S mutant horse liver alcohol dehydrogenase isoenzyme S (HLADH-S) was mutated to serine by site-directed mutagenesis in order to study the role of the residue in c oenzyme binding to the enzyme. The specific activity of the I269S and I224S mutant enzyme to ethanol was increased 6-fold and all Michaelis constants($K_a,\;K_b,\;K_p,\;and\;K_q$,/TEX>) were larger than those for the wild-type and I269S enzyme. The substitution decreased the afffinity to coenzymes and increased the specific activity of the enzyme. The mutant enzyme showed the highest catalytic efficiency for octanol among the primary alcohols. But it didn`t have activities on retinoids and 5${\beta}$-cholanic acid-3-one. From these results, it was confirmed that the hydrophobic interaction of Ile-224 residue with coenzyme was related to coenzyme affinity in ADH reaction. The substitution also affected the substrate affinities to the enzyme.

  • PDF

Expression of Neuropeptide Y(NPY) and NADPH-diaphorase Neurons in the Hypothalamus and Cerebral Cortex of Fasting and Anorexia Mutant Mice(anx/anx). (절식시킨 생쥐와 식욕부진 돌연변이 생쥐의 시상하부와 대뇌겉질에서 Neuropeptide Y와 NADPH-diaphorase의 이중면역조직화학법에 의한 발현)

  • 김미자
    • Journal of Nutrition and Health
    • /
    • v.33 no.5
    • /
    • pp.491-496
    • /
    • 2000
  • Food intake is regulated by both central and peripheral mechanisms. In the central nervous, the hypothalamus acts for autonomic and endocrine homeostasis. The paraventricular nucleus(PVN) of hypothalamus is an imprtant site of interaction in central feeding pathways. Neuroepetide Y(NPY)is one of the most powerful neurochemical stimulants of food intake known. Also brain nitric oxide(NO), known as neurotransmitter, is involved in the mechanisms that regulate food intake. In this experiment, 24h fasting mice and anorexia mutant mice have been to examine the expression of NPY, which is the major neuropeptide increasing food intake. Double staining with NPY and nicotinamide-adenine-dinucleotide-phosphate diaphorase(NADPH-d), followed by immunohistochemical method and image analysis, have been used to observe coexisting neurons and the level of expression of each neurons. The results were as follows. 1) NPY-immunoreactivitys reduced immune response of the hypothalamus, particularly paraventricular nucleus(PVN), in anorexia mutant mice. Decreased level of NPY is assumed to be a major pathological factor in anorexia mutant mice. On the other hand, PVN in hypothalamus of fasting mice showed increased immunoreactivity which is in agreement of other researchers. 2) NPY and NADPH-d double staining revealed coexisting neurons in the cerebral cortex. Fasting mice had a tendency to have increased level of coexisting neurons compared to the control group. Compared to the control group, fasting mice express is not increase level of NPY-immunoreactivity, while anorexia mutant mice tended to have a decreased level.

  • PDF

Effect of Substituted Residue 139 and 258 on Structural Changes of Mutant Tryptophan Synthase Pro96→Leu α-Subunit (트립토판 중합효소 α 소단위 잔기 치환체 Pro96→Leu의 구조 변화에 영향을 미치는 139 및 258 잔기의 치환 효과)

  • Lee, Joo-Youn;Jeong, Jae-Kap;Shin, Hae-Ja;Lim, Woon-Ki
    • Journal of Life Science
    • /
    • v.12 no.4
    • /
    • pp.464-468
    • /
    • 2002
  • Enzymatic activities and fluorescence spectroscopic properties of the double mutant proteins P96L/F139W, P96L/F258W and a triple mutant protein P96L/F139W/F258W of tryptophan synthase $\alpha$ subunit from Escherichia coli was examined to study tertiary and local structure changes around the tryptophan residues. The enzymatic activities of P96l./F139W and P96L/F258W were similar, but P96L/F139W/F258W had lower activity, as compared to wild type. The fluorescence intensities of double mutant, P96L/F139W and P96L/F258W, were decreased but that of a triple mutant, P96L/F139W/F258W, was increased when compared to wild type. The sum of the maximum fluorescence intensity (fluorescence intensity at the λ$_{max}$) for the double mutant proteins was not equal to the intensity seen in the triple mutant protein. The enzymatic activity and fluorescence data indicate that the replacement of Pro$^{96}$ longrightarrowLeu might affect on the stability of helix 8 and the loop located between strand 4 and helix4. The result suggests that the tertiary structure of triple mutant (P96L/F139W/F258W), being different from wild type, might have more compact residual structure at the vicinity of 139 and 258.8.

Impact of Expanded Small Alkyl-Binding Pocket by Triple Point Mutations on Substrate Specificity of Thermoanaerobacter ethanolicus Secondary Alcohol Dehydrogenase

  • Dwamena, Amos K.;Phillips, Robert S.;Kim, Chang Sup
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.3
    • /
    • pp.373-381
    • /
    • 2019
  • Site-directed mutagenesis was employed to generate five different triple point mutations in the double mutant (C295A/I86A) of Thermoanaerobacter ethanolicus alcohol dehydrogenase (TeSADH) by computer-aided modeling with the aim of widening the small alkyl-binding pocket. TeSADH engineering enables the enzyme to accept sterically hindered substrates that could not be accepted by the wild-type enzyme. The underline in the mutations highlights the additional point mutation on the double mutant TeSADH introduced in this work. The catalytic efficiency ($k_{cat}/K_M$) of the ${\underline{M151A}}$/C295A/I86A triple TeSADH mutant for acetophenone increased about 4.8-fold higher than that of the double mutant. A 2.4-fold increase in conversion of 3'-methylacetophenone to (R)-1-(3-methylphenyl)-ethanol with a yield of 87% was obtained by using ${\underline{V115A}}$/C295A/I86A mutant in asymmetric reduction. The ${\underline{A85G}}$/C295A/I86A mutant also produced (R)-1-(3-methylphenyl)-ethanol (1.7-fold) from 3'-methylacetophenone and (R)-1-(3-methoxyphenyl)-ethanol (1.2-fold) from 3'-methoxyacetophenone, with improved yield. In terms of thermal stability, the ${\underline{M151A}}$/C295A/I86A and ${\underline{V115A}}$/C295A/I86A mutants significantly increased ${\Delta}T_{1/2}$ by $+6.8^{\circ}C$ and $+2.4^{\circ}C$, respectively, with thermal deactivation constant ($k_d$) close to the wild-type enzyme. The ${\underline{M151A}}$/C295A/I86A mutant reacts optimally at $70^{\circ}C$ with almost 4 times more residual activity than the wild type. Considering broad substrate tolerance and thermal stability together, it would be promising to produce (R)-1-(3-methylphenyl)-ethanol from 3'-methylacetophenone by ${\underline{V115A}}$/C295A/I86A, and (R)-1-phenylethanol from acetophenone by ${\underline{M151A}}$/C295A/I86A mutant, in large-scale bioreduction processes.

The vacuolar processing enzyme (VPE) mutation suppresses an HR-like cell death induced by the double knockout mutant of vacuolar Ca2+-ATPases in Arabidopsis (애기장대에서 두 액포막 칼슘펌프 돌연변이에 의하여 유도되는 세포사멸 표현형의 액포수식효소(VPE) 돌연변이에 의한 억제)

  • Park, Hyeong-Cheol;Lee, Sang-Min;Kim, Ho-Soo;Chung, Woo-Sik
    • Journal of Plant Biotechnology
    • /
    • v.38 no.2
    • /
    • pp.169-175
    • /
    • 2011
  • Calcium ($Ca^{2+}$) signals have been implicated in regulating plant development and responses to the environmental stresses including a programmed cell death pathway. In animals and plants, cytosolic $Ca^{2+}$ signals have been involved in the activation of programmed cell death (PCD). Recently, we reported that disruption of Arabidopsis vacuolar $\b{A}$utoinhibited $\underline{C}a^{2+}$-$\b{A}$TPases (ACAs), ACA4 and ACA11, resulted in the activation of a salicylic acid-dependent programmed cell death pathway. Although extensive studies have revealed various components of a PCD in plants, executors to directly induce PCD are well unknown. Here, we provide that the vacuolar processing enzymes (VPEs) are involved in a PCD induced by the double knockout mutant of vacuolar $Ca^{2+}$-ATPases in Arabidopsis. The gene expression of VPE was rapidly up-regulated and the enzyme activity of VPE was increased in the double mutant plants. We also generated aca4/aca11/avpe, aca4/aca11/${\gamma}$vpe and aca4/aca11/avpe/${\gamma}$vpe mutant plants. Although cell death phenotype of the double mutant plants was not completely disappeared in the triple and quadruple mutant plants, the triple and quadruple mutant plants showed to significantly delay cell death phenotype of the double mutant plants. These results suggest that the VPE is involved in the HR-like cell death in the double mutant of vacuolar $Ca^{2+}$-ATPases in Arabidopsis.