• Title/Summary/Keyword: double gate MOSFET subthreshold swing nano scale

Search Result 2, Processing Time 0.016 seconds

A Study on the Subthreshold Swing for Double Gate MOSFET (더블게이트 MOSFET의 서브문턱스윙에 대한 연구)

  • Jung, Hak-Kee;Dimitrijev, Sima
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.4
    • /
    • pp.804-810
    • /
    • 2005
  • An analytical subthreshold swing (SS) model has been presented for double gate MOSFET(DGMOSFET) in this study. The results calculated by this model are more precise for about 10nm channel length and thickness than those derived from the previous models. The results of this model are compared with Medici simulation to varify the validity of this model, and good agreementes have been obtained. The changes of SS have been investigated for various channel lengths, channel thicknesses and gate oxide thicknesses using this model, given that these parameters are very important in design of DGMOSFET. This demonstrates that the proposed model provides useful data for design of nano-scale DGMOSFET. It is Known that the SS is improved to smaller ratios of channel thickness vs channel length and is smaller in very thin oxides. New gate dielectric materials with high permittivity have to be developed to enable design of nano-scale DGMOSFET.

Quantum-Mechanical Modeling and Simulation of Center-Channel Double-Gate MOSFET (중앙-채널 이중게이트 MOSFET의 양자역학적 모델링 및 시뮬레이션 연구)

  • Kim, Ki-Dong;Won, Tae-Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.7 s.337
    • /
    • pp.5-12
    • /
    • 2005
  • The device performance of nano-scale center-channel (CC) double-gate (DG) MOSFET structure was investigated by numerically solving coupled Schr$\"{o}$dinger-Poisson and current continuity equations in a self-consistent manner. The CC operation and corresponding enhancement of current drive and transconductance of CC-NMOS are confirmed by comparing with the results of DG-NMOS which are performed under the condition of 10-80 nm gate length. Device optimization was theoretically performed in order to minimize the short-channel effects in terms of subthreshold swing, threshold voltage roll-off, and drain-induced barrier lowering. The simulation results indicate that DG-MOSFET structure including CC-NMOS is a promising candidates and quantum-mechanical modeling and simulation calculating the coupled Schr$\"{o}$dinger-Poisson and current continuity equations self-consistently are necessary for the application to sub-40 nm MOSFET technology.